Modular Monoliths

@simonbrown

Simon Brown g
. @simonbrown

I'll keep saying this ... iIf people can't build
monoliths properly, microservices won't help.
#qconlondon #DesignThinking #Modularity

10:49 AM - 4 Mar 2015

305 Retweets 185 Likes ﬁ,ﬁ e 3 @ ﬁ k ’3 iy ‘

s> Architect Clippy
U earchitectclippy

| see you have a poorly structured monolith.
Would you like me to convert it into a poorly
structured set of microservices?

12:59 AM - 24 Feb 2015

4,413 Retweets 2,815 Likes 0 | . @ &‘ ﬁ, 9

&

._.’ﬂ -
3

oo

Monolithic vs Microservices
Fo Y oo

/ Monolithic
/A&
T

a7 ER) @alvaro_sanchez odobo

Microservices

An independent consultant
specialising in software architecture

Robert C. Martin Series 1‘*
Software Software CleaniAvchitecture Desian 1t

Architecture Architecture

A Craftsman’s Guide to

Software Structure and Design From Programmer
. to Software Architect

for Developers for Developers

Robert C. Martin
ames Grenn ng 7 Simon Brown

Technical leadership and Visualise, document and explore : .
the balance with agility your software architecture BEr 1 ' \S =S
Pro JSP

Simon Brown Simon Brown

“The Missing Chapter”

e HALL

Robert C. Martin Series

Clean Architecture

A Craftsman’s Guide to-
Software Structure and Design

Robert C. Martin

With contributions by James Grenning and Simon Brown

Foreword by Kevlin Henney
'D Afterword by Jason Gorman

Personal Banking
Customer

Person]

Acustomer of the bank, with
personal bank accounts.

Sends e-mails to

Bt &t Also the creator of the
C4 model, and Structurizr

Personal Banking

Customer
tPerson]

Acustomer of the bank, with
personal bank accounts.

Sends e-mails to

ﬁ About Tour Getting Started C4 model Express v Pricing Examples Help 4 Sign up %] Sign in

Containers

Database API Application Syste
[Container: Relational Database Schemal Reads from and [Container: Java and Spring MVC]
Stores user registration information, Wiheete Provides Internet banking . ¢ -
hashed authentication credentials, - functionality via a JSON/HTTPS API. f 0 5
access logs, etc. : e
ontainer ki

Visualise, document and explore your software architecture with the C4 model

Mobil
Single-Page Application m,?u‘.'wen‘.:ﬂg
[Contalner: JavaScript and Angular]
Provides a limited subset of the
Provides all of the Internet banking Internet banking functionality to
functionality to customers via their &g B customers via their moblle device.

Accounts Summary
Controller

[Component: Spring MVC Rest Controller]

sign In Controller Reset Password Controller

[Component: Spring MVC Rest Controller] [Component: Spring MVC Rest Controller]

& Cloud plans | B On-premises installation

Pl Application
i

1_ Reads from and aser Financial Risk System

writes to
1DBC

Personal Banking

Customer
el

_ Database Systen Acustomes ofthe bank, wh
Cortainer: RelationalDatabase Schemal et Sa s 1. Context

B e 4 ores ol of the cors ba A global investment bank based in London, New York and Singapore trades (buys and sells) financial products
access logs, etc. \ e with other banks (counterparties). When share prices on the stock markets move up or down, the bank either
- makes money or loses it. At the end of the working day, the bank needs to gain a view of how much risk they are
exposed to (e.g. of losing money) by running some calculations on the data held about their trades. The bank has
an existing Trade Data System (TDS) and Reference Data System (RDS) but need a new Risk System.

InternetBankingSystemException
 ———
 —

ClinicService
Mostly used as a facade so all controllers have
a single point of-'ul‘
ccom.bigbankplc.internetbanking.component.mainframe FRAANCIAL MK Oysoons L (==
e Sanks Mcroh Excngn Caens th bk o sk
— (s

O lienes s sytem

MainlmmeEankﬂ;systemFlmde Container diagram for Internet Banking System

BankingSystemConnection
 ——
 —

AbstractResponse
I

The server-side of Structurizr is
two Java/Spring modular monoliths,
running on Pivotal Web Services’
Cloud Foundry PaaS

(i.e. no Docker, Kubernetes, etc)

A well structured codebase
S easy to visualise

Context, Containers, Components and Code - c4dmodel.com

Context diagram

[Person]

A user or business with content that
(l eve | 1) \ is_ aggre_gatgd into _the website, ,
signed in using their Twitter ID. - .
Anonymous User Administration User
[Person] [Person]

Anybody on the web. A system administration user,
signed in using a Twitter ID.
Manage user profile

and tribe membership

View people, tribes (businesses,
communities and interest
groups), content, events, jobs,
etc from the local tech, digital
and IT sector

Add people, add tribes and
manage tribe membership

N\

techtribes.je
[Software System]

()
&

techtribes.je is the only
way to keep up to date
with the IT, tech and digital
sector in Jersey and
Guernsey, Channel Islands.

\

Gets content using
RSS and Atom feeds
from

Gets profile information
and tweets from

Gets information
about public code
repositories from

Twitter GitHub Blogs

[Software System] [Software System] [Software System]

4 &

techtribes.je - Context

/

Anonymous User Aggregated User Administration User
[Person] [Person] [Person]
Anybody on the web. A user or business with content that A system administration user,

is aggregated into the website, signed in using a Twitter ID.
signed in using their Twitter ID.

Uses
[HTTPS]

Web Application
[Container: Spring MVC on
Apache Tomcat 7.x]

[[
Allows users to view people, tribes,
content, events, jobs, etc from the
local tech, digital and IT sector.

S l N
Reads from and writes data to

[SQL/JDBC, port 3306] Reads from
(level 2) K/ |

Relational Database File System NoSQL Data Store
[Container: MySQL 5.5.x] [Container] [Container: MongoDB 2.2.x]

Reads from
[Mongo DB Wire Protocol, port 27017]

Stores people, tribes, tribe Stores search indexes. Stores content from RSS/Atom feeds
membership, talks, events, jobs, (blog posts) and tweets.
badges, GitHub repos, etc.

X A 7

Reads from and writes data to , Reads from and writes data to
[SQL/JDBC, port 3306] Writes to [Mongo DB Wire Protocol, port 27017]

Content Updater

[Container: Java 7 Console
Application]

Updates profiles, tweets, GitHub
repos and content on a scheduled
basis.

Gets profile information Gets information Gets content using RSS

and tweets from about public code and Atom feeds from
[HTTPS] repositories from [HTTP]

/ [HTTPS]
Y

Twitter GitHub Blogs

[Software System] [Software System] [Software System]

techtribes.je - Containers

Component diagram

(level 3)

Relational Database File System
[Container: MySQL 5.5.x] [Container]

Stores people, tribes, tribe
membership, talks, events, jobs,
badges, GitHub repos, etc.

Stores search indexes.

Reads from and writes data to f
[SQL/JDBC, port 3306] Writes to

GitHub Search

Component Component
[Component: Spring [Component: Spring
Bean + JDBC] Bean + Lucene]

Provides access to Search facilities for news
GitHub repos. feed entries and tweets.

R

Updates search
indexes using

Updates GitHub

. Stores blog
repos using \ entries using
/

Scheduled

Content Updater
[Component: Spring
Scheduled Task]

Refreshes information
from external systems

every 15 minutes.

Uses

k/// v

GitHub Connector
[Component: Spring
Bean + Eclipse Mylyn]

Twitter Connector
[Component: Spring
Bean + Twitter4ij]

Retrieves profile
information and tweets
(using the REST and
Streaming APIs).

Retrieves information
about public repos.

G file inf . Gets information
etsar[?criot\],vge]?s ?;g}it]on about public code
(HTTPS] repositories from

[HTTPS]
Twitter GitHub
[Software System] [Software System]

Provides access to blog
entries and news. tweets.

NoSQL Data Store
[Container: MongoDB 2.2.x]

Stores content from RSS/Atom feeds
(blog posts) and tweets.

A

Reads from and writes data to
[Mongo DB Wire Protocol, port 27017]

rapp—

News Feed Entry Tweet

Component
[Component: Spring mj t: ing
Bean + MongoDB]

Component

Provides access to

Stores tweets
using

Logging oY%
Component
[Component: Spring
Bean + log4j]

Provides logging facilities
to all other components.

N

News Feed
Connector
[Component: Spring
Bean + ROME]

Retrieves content from
RSS and Atom feeds.

Gets content using RSS
and Atom feeds from
[HTTP]

Blogs
[Software Systems]

techtribes.je - Components - Content Updater

* Used by all components

je.techtribes.service

<<interface>>
TweetService
/\
|
|
DefaultTweetService

I
I
|
I
<<USesS>>
I

|
<<interface>>
TweetDao
/\
:
ClaSS diagram

(level 4) je.techtribes.data

‘IIIIIIIIIIIIIIIIIIIIIIII.‘

je.techtribes.service

/\
:
DefaultTweetService

Where's my
‘component™?

(the “Tweet Component” doesn't exist as a single thing;
it's a combination of interfaces and classes
across a layered architecture)

I
<<uUSeS>>
I

|
<<interface>>
TweetDao
/\
|
|
MongoDBTweetDao

je.techtribes.data

Illl..

|
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
|
4

*

AEEEEEEEEEEEEEEEEEEEEEERER®

“the component exists
conceptually”

Abstractions should
reflect the code

JUST ENOUGH
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

o/ AN
N 1, NS

g i mrsgm [X
WY 2 R E=R 1 RYE. 3=
- W=
e e T T —— =g -
- P =
Ny 7 J] "l S B e S\
N ([pe—— - - - - - e
§ | S . 4 =
. iy : 2 . N’ . ™~ |

Model-code gap. Your architecture models and your source code will not show the
same things. The difference between them is the model-code gap. Your architecture

models include some abstract concepts, like components, that your programming lan-
guage does not, but could. Beyond that, architecture models include intensional ele-

ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is

complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This

is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But

reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they

are abstract and intensional; source code executes on machines because it is concrete
and extensional.

“model-code gap”

Software Reflexion Models:

Bridging the Gap between Source and High-Level Models®

Gail C. Murphy and David Notkin

Dept. of Computer Science & Engineering
University of Washington
Box 352350
Seattle WA, USA 98195-2350

{gmurphy, notkin }@cs.washington.edu

Abstract

Software engineers often use high-level models (for in-
stance, box and arrow sketches) to reason and com-
municate about an existing software system. One
problem with high-level models 1s that they are al-
most always inaccurate with respect to the system’s
source code. We have developed an approach that
helps an engineer use a high-level model of the struc
ture of an existing software system as a lens through
which to see a model of that system’s source code. In
particular, an engineer defines a high-level model and
specifies how the model maps to the source. A tool
then computes a software reflexion model that shows
where the engineer’s high-level model agrees with and
where 1t differs from a model of the source.

The paper provides a formal characterization of re-
flexion models, discusses practical aspects ol the ap-
proach, and relates experiences ol applying the ap-
proach and tools to a number of different systems.
The illustrative example used in the paper describes
the application of reflexion models to Net BSD, an im
plementation of Unix comprised of 250,000 lines of C
code. In only a few hours, an engineer computed sev
eral reflexion models that provided him with a useful,
global overview of the structure of the NetBSD vir-
tual memory subsystem. The approach has also been
applied to aid in the understanding and experimen-
tal reengineering of the Microsoft Excel spreadsheet
product.

*This research was funded in part by the NSI grant
CCR-8858804 and a Canadian NSERC post-graduate
scholarship.

Il‘clmi::iun to make digital/hard copies of all or part of this mate-
rial without fee is granted provided that the copies are not made or dis
tributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication and 1t: date appear. and notice is
given that copyright i1s by permission of the Association for Comput
ing Machinery, Inc. (ACM). To copy otherwise, to republizh, to post
on servers or to redistribute to lists, requires prior specific permission
andfor a fee.

SIGSOFT '95 Washington, D.C., USA
©1995 ACM 0.89791-T16-2/95/0010...$3.50

IlKevin Sullivan

Dept. of Computer Science
University of Virginia
Charlottesville VA, USA 22903

sullivan@es.virginia.edu

1 Introduction

Software engineers often think about an existing
software system in terms of high-level models.
Box and arrow sketches of a system, for instance,
are often found on engineers’ whiteboards. Al
though these models are commonly used, rea
soning about the system in terms of such models
can be dangerous because the models are almost
always inaccurate with respect to the system’s
source.

Current reverse engineering systems derive
high-level models from the source code. These
derived models are useful because they are, by
their very nature, accurate representations of the
source. Although accurate, the models created
by these reverse engineering systems may differ
from the models sketched by engineers; an exam-
ple of this is reported by Wong et al. [WTMS95].

We have developed an approach, illustrated in
Figure 1, that enables an engineer to produce
sufficiently accurate high-level models in a differ-
ent way. The engineer defines a high-level model
of interest, extracts a source model (such as a
call graph or an inheritance hierarchy) from the
source code, and defines a declarative mapping
between the two models. A software reflexion
model is then computed to determine where the
engineer’s high-level model does and does not
agree with the source model.! An engineer in
terprets the reflexion model and, as necessary,
modifies the input to iteratively compute addi-
tional reflexion models.

'The old English spelling differentiates our use of “re-
flexion” from the field of reflective computing [Smi84].

1 Introduction

Software engineers often think about an existing
soltware system in terms ol high-level models.
Box and arrow sketches of a system, for instance,
are often found on engineers’ whiteboards. Al-
though these models are commonly used, rea-
soning about the system in terms of such models
can be dangerous because the models are almost
always inaccurate with respect to the system’s
source.

Current reverse engineering systems derive
high-level models from the source code. These
derived models are useful because they are, by
their very nature, accurate representations of the
source. Although accurate, the models created
by these reverse engineering systems may differ
from the models sketched by engineers; an exam-

ple of this is reported by Wong et al. [WTMS95].

Our architecture diagrams
don't match the code.

JUST ENOUGH
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

2o UGN
NV e

e L foee e /|
¢ AN
e
.~ ' _II /)
My,
N .'rr:.!..';_“'l‘. .
T e
TR T .y
L g r
r i
;:‘ f
) W)
‘i‘F" ar 4
\::r (= KN
¥ e B
v
' B EL
1 /AL
- :. f
1=\
T
[}
A
3¢ 8 .
rA %’l”"

Model-code gap. Your architecture models and your source code will not show the
same things. The difference between them is the model-code gap. Your architecture
models include some abstract concepts, like components, that your programming lan-
guage does not, but could. Beyond that, architecture models include intensional ele-

ments, like design decisions and constraints, that cannot be expressed in procedural
source code at all.

Consequently, the relationship between the architecture model and source code is

complicated. It is mostly a refinement relationship, where the extensional elements
in the architecture model are refined into extensional elements in source code. This

is shown in Figure 10.3. However, intensional elements are not refined into corre-
sponding elements in source code.

Upon learning about the model-code gap, your first instinct may be to avoid it. But

reflecting on the origins of the gap gives little hope of a general solution in the short
term: architecture models help you reason about complexity and scale because they

are abstract and intensional; source code executes on machines because it is concrete
and extensional.

“architecturally-evident coding style”

The code structure should reflect
the architectural intent

Package by layer

Organise code based upon
what the code does from

a technical perspective

Package by layer
S a “horizontal” slicing

OrdersController
|

com.mycompany.myapp.web

Web

<<uses>>

com.mycompany.myapp.service

I
<<uUsSesS>>

D d ta <<interface>>
OrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

Relaxed vs strict layering

OrdersController
|

com.mycompal'ny.myapp.web

<<uses>>

OrdersServicelmpl
|

com.mycompany.myapp.service

I
<<uSesS>>

<<interface>>
OrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

Chapter 1

Introducing the Spring Framework

Presentation tier

JSPs or other views
Generate HTML

|

Web tier actions
Process user input, call
service layer, choose
view to display

N

Remote service
“exporters”:
Web services or
other protocols

N\

/

Declarative services typically used here,

Business services layer: Exposes key functionality.
Manages transaction boundaries, includes business
logic. No knowledge of persistence specifics.

h 4

DAQ interface layer
Defines persistence operations, independent of
implementing technology

l

DAQ interface implementation layer
Retrieves, saves entities using ORM tool, JDBC

I

Persistent
domain obiect

Let’s summarize each layer and its responsibilities, beginning closest to the database or other enterprise
resources:

J Presentation layer: This is most likely to be a web tier. This layer should be as thin as possible.
It should be possible to have alternative presentation layers — such as a web tier or remote web
services facade —on a single, well-designed middle tier.

J Business services layer: This is responsible for transactional boundaries and providing an entry
point for operations on the system as a whole. This layer should have no knowledge of presen-
tation concerns, and should be reusable.

J DAO interface layer: This is a layer of interfaces independent of any data access technology that is
used to find and persist persistent objects. This layer effectively consists of Strategy interfaces for
the Business services layer. This layer should not contain business logic. Implementations of
these interfaces will normally use an O/R mapping technology or Spring'’s JDBC abstraction.

J Persistent domain objects: These model real objects or concepts such as a bank account.

J Databases and legacy systems: By far the most common case is a single RDBMS. However, there
may be multiple databases, or a mix of databases and other transactional or non-transactional
legacy systems or other enterprise resources. The same fundamental architecture is applicable in
either case. This is often referred to as the EIS (Enterprise Information System) tier.

In a |2EE application, all layers except the EIS tier will run in the application server or web container.
Domain objects will typically be passed up to the presentation layer, which will display data they con-
tain, but not modify them, which will occur only within the transactional boundaries defined by the busi-
ness services layer. Thus there is no need for distinct Transfer Objects, as used in traditional J2EE
architecture.

In the following sections we’ll discuss each of these layers in turn, beginning closest to the database.

Spring aims to decouple architectural layers, so that each layer can be modified as
far as possible without impacting other layers. No layer is aware of the concerns of
the layer above; as far as possible, dependency is purely on the layer immediately
below. Dependency between layers is normally in the form of interfaces, ensuring
that coupling is as loose as possible.

O/R mapping IayerE_

<omo-

EIS tier Databases, SIS

other transactional
resources S

Spring aims to decouple architectural layers, so that each layer can be modified as
far as possible without impacting other layers. No layer is aware of the concerns of
the layer above; as far as possible, dependency is purely on the layer immediately
below. Dependency between layers is normally in the form of interfaces, ensuring
that coupling is as loose as possible.

Also sample codebases,
Starter projects, demos
at conferences, etc...

Cargo cult programming can also
refer to the results of applying a
design pattern or coding style blinaly
without understanding the reasons
pehind that design principle.

https://en.wikipedia.org/wiki/Cargo_cult_programming

Screaming Architecture

Uncle Bob / 30 Sep 207171 Architecture

Imagine that you are looking at the blueprints of a building. This document,
prepared by an architect, tells you the plans for the building. What do these plans
tell you?

If the plans you are looking at are for a single family residence, then you’ll likely see
a front entrance, a foyer leading to a living room and perhaps a dining room. There’ll
likely be a kitchen a short distance away, close to the dining room. Perhaps a dinette
area next to the kitchen, and probably a family room close to that. As you looked at
those plans, there’d be no question that you were looking at a house. The
architecture would scream: house.

Or if you were looking at the architecture of a library, you'd likely see a grand
entrance, an area for check-in-out clerks, reading areas, small conference rooms,
and gallery after gallery capable of holding bookshelves for all the books in the
library. That architecture would scream: Library.

So what does the architecture of your application scream? When you look at the top
level directory structure, and the source files in the highest level package; do they
scream: Health Care System, or Accounting System, or Inventory Management
System? Or do they scream: Rails, or Spring/Hibernate, or ASP?

PresentationDomainDatalLayering

Martin Fowler
26 August 2015

One of the most common ways to modularize an information-rich
program is to separate it into three broad layers: presentation (Ul),
domain logic (aka business logic), and data access. So you often see
web applications divided into a web layer that knows about handling
http requests and rendering HTML, a business logic layer that
contains validations and calculations, and a data access layer that
sorts out how to manage persistant data in a database or remote
services.

A%

Although presentation-domain-data separation is a common
approach, it should only be applied at a relatively small granularity.
As an application grows, each layer can get sufficiently complex on its
own that you need to modularize further. When this happens it's
usually not best to use presentation-domain-data as the higher level
of modules. Often frameworks encourage you to have something like
view-model-data as the top level namespaces; that's ok for smaller
systems, but once any of these layers gets too big you should split
your top level into domain oriented modules which are internally
layered.

Changes to a layered architecture
usually result in changes

across all layers

Package by feature

Organise code based upon
what the code does from

a functional perspective

Features, domain concepts,
aggregate roots, etc

Package by feature
s a “vertical” slicing

OrdersController
|

I
<<usSesS>>
I

|
V
<<interface>>
OrdersService
/\

OrdersServicelmpl
|

I
<<US€S>?

|
|
|
<<interface>>
OrdersRepository
I
|
I
|
I
|

JdbcOrdersRepository

com.mycompany.myapp.orders

Cited benefits include higher
cohesion, lower coupling, and

related code is easier to find

Ports and adapters

Keep domain related code separate
from technical details

Variations on this theme include
"nexagonal architecture”,

“clean architecture”,
“‘onion architecture”, etc

The “inside” is technology agnostic,
and is often described in terms
of a ubiquitous language

The “outside” is technology specific

The “outside” depends
upon the “insiade”

 outside) | ot
. OrdersController
(outside)

com.mycompany.myapp.web

<<uses>>

<<interface>>
OrdersService

“

o

Domain
(inside)

<<USeS>>

|4
<<interface>>
Orders

com.mycompany.myapp.domain

|
|
JdbcOrdersRepository

com.mycompany.myapp.database

This approach
S also

“cargo culted”,
yet not all
frameworks
are equal

OrdersController

|
com.mycompany.myapp.web

<<uses>>

Hi, can you add
feature X to the
orders functionality?

<<interface>>
OrdersRepository
JdbcOrdersRepository

com.mycompany.myapp.data

OrdersController

|
com.mycompa:ny. myapp.web

<<uses>>

<<interface>>
OrdersService

OrdersServicelmpl

|
com.mycompany.myapp.service

I
<<USeS>>

<<interface>>
OrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

OrdersController
|

com.mycompal'ny.myapp.web

<<uses>>

OrdersServicelmpl
|

com.mycompany.myapp.service

I
<<uSesS>>

<<interface>>
OrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

A big ball of mud is a casually, even
napnhazardly, structuread system. Its
organization, if one can call it that,

IS dictated more by expediency
than design.

Big Ball of Muc
Brian Foote and Joseph Yoder

Architectural principles
iIntroauce consistency via
constraints and guidelines

web controllers should never
access repositories directly

we enforce this principle through
good discipline and code reviews,
pecause we trust our developers

Responsible, professional software
developers are still human :-)

it's 2018! In a world of artificial
intelligence and machine learning,

why don’t we use tools to
help us build “good” software?

O'REILLY"

Building
kvolutionary
Architectures

“Fitness functions”

(e.g. cyclic complexity, coupling, etc)

Neal Ford, Rebecca Parsons & Patrick Kua

Tooling?

Static analysis tools, architecture violation checking, etc

types in package ** /web should
Nnot access types in **/data

Using tools to assert good code
structure seems like a hack

But Java’'s access modifiers
are flawed...

Package by component

Organise code by bundling together
everything related to a “component”

Component?

a grouping of related functionality behind a nice

clean interface, which resides inside an execution
environment like an application

Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, microservice, database schema, file system, etc)

Component

A software system is made up of one or more containers,
each of which contains one or more components,
which in turn are implemented by one or more code elements.

OrdersController
|

com.mycompalhy.myapp.web
|
|
|
|

<<uses>>

OrdersComponentimpl

<<USEeS>>

v
<<interface>>
OrdersRepository
/\

I
JdbcOrdersRepository

com.mycompany.myapp.orders

Package by component is about
applying component-based or

service-oriented design thinking
to a monolithic codebase

Modularity as a principle

Separating interface
from implementation

Public API Public API

Impermeable
pbounaaries

Access modifiers vs
network boundaries

The devil is In the
Implementation detalils

Organisation vs encapsulation

't you make all types public,
architectural styles
can be conceptually different,
put syntactically identical

OrdersController

com.mycompa:ny.myapp.web

<<uses>>

OrdersController

1
I
|
<<USES>>
|

v

<<interface>>
OrdersService

<<interface>>
OrdersService

/\

A

OrdersServicelmpl

OrdersServicelmpl

|
|
com.mycompany.myapp.service

I
<<uUSesS>>

|
|
|
<<US€S>?
I
I
I

v

<<interface>>
OrdersRepository

<<interface>>
OrdersRepository

/\

/\

JdbcOrdersRepository

JdbcOrdersRepository

com.mycompany.myapp.data

com.mycompany.myapp.orders

OrdersController

com.mycompany.myapp.web

<<US€S>?

<<interface>>
OrdersService

JAN

OrdersServicelmpl

|
<<USesS>>

v

<<interface>>
Orders

|
com.mycompany.myapp.domain

JdbcOrdersRepository

com.mycompany.myapp.database

OrdersController

com.mycompa:ny.myapp.web
!
!
!
!

<<uses>>

L4

<<interface>>
OrdersComponent

JAN

OrdersComponentimpl

|
<<uUSeS>>

4

<<interface>>
OrdersRepository

JAN

JdbcOrdersRepository

com.mycompany.myapp.orders

OrdersController

I
I
I
I
I
<<USeS>>
I
I
I
I
I
I

v

OrdersController

OrdersController

J
I
I
<<USES>>
|

v

<<interface>>
OrdersService

<<interface>>
OrdersService

/\

A

|
|
|
|
|
<<US€S>?
|
|
|
|
|
|

L4

OrdersController

<<interface>>
OrdersService

OrdersServicelmpl

OrdersServicelmpl

JAN

|
I
I
I
I
<<uUsSeS>>
I
I
I
I
I
I

v

|
I
I
<<uses>>
I
I
I

v

OrdersServicelmpl

<<uses>>

L4

|
<<uUSeS>>

V

<<interface>>
OrdersComponent

<<interface>>
Orders

JAN

<<interface>>
OrdersRepository

<<interface>>
OrdersRepository

JAN

/\

JdbcOrdersRepository

JdbcOrdersRepository

_____________[>

OrdersComponentimpl

I
<<uUSeS>>

4

<<interface>>
OrdersRepository

JAN

JdbcOrdersRepository

JdbcOrdersRepository

OrdersController

com.mycompa:ny.myapp.web

<<uses>>

<<interface>>
OrdersService

com.mycompany.myapp.service

I
<<uUSeS>>

<<interface>>
OrdersRepository

JAN

com.mycompany.myapp.data

OrdersController

1

I

I
<<USES>>

v

A

|

I

I
<<uUsSeS>>

|
|
|
\4

/\

com.mycompany.myapp.orders

OrdersController

com.mycompa:ny.myapp.web

<<US€S>?

<<interface>>
OrdersService

|
<<uUSes>>

4

<<interface>>
Orders

|
com.mycompany.myapp.domain

com.mycompany.myapp.database

OrdersController

|
!
com.mycompalhy.myapp.web

<<uses>>

<<interface>>
OrdersComponent

|
<<uUSeS>>

Vv

JAN

com.mycompany.myapp.orders

Use encapsulation to minimise the
number of potential dependencies

The surface area of your internal
public APIs should match your
architectural intent

't you're building a monolithic
application with a single codebase,

try to use the compiler to
enforce boundaries

Or other decoupling modes such as a
module framework that differentiates
public from published types

Or split the source code tree
iINnto multiple parts

TSRS | ot
OrdersController

com.mycompany.myapp.web

<<uses>>

<<interface>>
OrdersService

<<USeS>>

|4
<<interface>>
Orders

com.mycompany.myapp.domain

|
|
JdbcOrdersRepository

com.mycompany.myapp.database

There are real-world trade-offs
with many source code trees

And, more generally, each decoupling
mode has different trade-offs

(modular monoliths vs microservices)

S PN OIU G
SOFTWARE ARCHITECTURE

A RISK-DRIVEN APPROACH
GEORGE FAIRBANKS

FOREWORD BY DAVID GARLAN

T

e DR TR T EAE

.:‘l 4 i
N
e - N
G
s b

—
-
=

A good architecture rarely
nappens through
architecture-indifferent design

Agility is a
quality attribute

A good architecture
enables agility

- Modularity --------semeemeeeee

Microservices

Distributed
big ball of mud

o Not logged in Talk Contributions Create account Log in

xS
; * W b
¥oQ

; A 9‘ Article Talk Read Edit View history Q
%L f
S
WIKIPEDIA Decomposition (computer science)
The Free Encyclopedis
cree EReyEopEti From Wikipedia, the free encyclopedia
Main page Decomposition in computer science, also known as factoring, is breaking a complex problem or system into parts that are easier to
Contents

conceive, understand, program, and maintain.
Featured content

Current events Contents [hide]

Random article ,
L 1 Overview
Donate to Wikipedia

2 Decomposition topics

Wikipedia store
2.1 Decomposition paradigm
Iz 2.2 Decomposition diagram
Help 3 See also
About Wikipedia

. 4 References
Communitv nortal

Decomposition paradigm |[edit]

A decomposition paradigm in computer programming is a strategy for organizing a program as a number of parts, and it usually implies a
specific way to organize a program text. Usually the aim of using a decomposition paradigm is to optimize some metric related to program
complexity, for example the modularity of the program or its maintainability.

Most decomposition paradigms suggest breaking down a program into parts so as to minimize the static dependencies among those
parts, and to maximize the cohesiveness of each part. Some popular decomposition paradigms are the procedural, modules, abstract
data type and object oriented ones.

Programming R. Morris
Techniques Editor

On the Criteria To Be
Used 1n Decomposing
Systems into Modules

Expected Benefits of Modular Programming

The benefits expected of modular programming are:
(1) managerial—development time should be shortened
because separate groups would work on each module
with little need for communication: (2) product flexi-
bility—it should be possible to make drastic changes to
one module without a need to change others; (3) com-
prehensibility—it should be possible to study the
system one module at a time. The whole system can
therefore be better designed because 1t 1s better under-

stood.

Class-Responsibility-Collaboration

Well-defined, in-process components is a
stepping stone to out-of-process components

OQ%
O

Qoo

High cohesion
Low coupling
Focussed on a business capability
Bounded context or aggregate
Encapsulated data
Substitutable
Composable

(I.e. microservices)

O O
e oK
From components O Q

to microservices

< All of that plus

Individually deployable
Individually upgradeable

Individually replaceable
Individually scalable
Heterogeneous technology stacks

Choose microservices for the benefits,
not because your monolithic
codebase iIs a mess

Whatever architectural approach
you choose, don't forget about
the implementation details

Beware of the
model-code gap

Thank you!

simon.brown@codingthearchitecture.com
@simonbrown

