Chris Richardson

Founder of Eventuate.io
Founder of the original CloudFoundry.com

Author of POJOs in Action and Microservices Patterns

¥ @crichardson
chris@chrisrichardson.net

http://learn.microservices.io GOTO
Copyright © 2019 Chris Richardson Consulting, Inc. All rights reserved C H | CAG O 2 O 1 9

Presentation goal

Implementing transactions and
queries In a mICroservice
architecture using
asynchronous messaging

Presentation goal

Microservices > REST
Microservices > Events
Microservices != Event Sourcing
Apache Kafka != Event Store

OFTHEACM

ANPTIVG

10 e
ENVIROAMENT

s

=

7

About Chris

Consultant and
focussed on helpl
ons adopt

organizatl

MICroservi

(http://www.chrisrichardson.net

trai

n

{

ce architect

ner
9

e
Ure

/)

About Chris

Founder of a startup that Is creating
an open-source/Saas platform
that simplifies the development of
transactional microservices

(http://eventuate.io)

About Chris

Chris Richardson

Get a 40% discount:
http://bit.ly/gotochgo2019-microservices

@crichardson

About Chris: microservices.io

= Microservices pattern
language

» Articles
x Code examples

x Microservices Assessment
Platform - http://
Mmicroservices.io/platform

Agenda

® [ransactions, queries and miCroservices
x Managing transactions with sagas
x |mplementing queries with CQRS

= |mplementing transactional messaging

@crichardson
LSS

The microservice architecture
structures
an application as a
set of loosely coupled
services

Service = independently deployable

component
SyﬂChI’OﬂOUS AP - Jf}:f?ﬂ;{;faf;f’;]jf 4
REST/gRPC . |nvokes
Asynchronous Operations
Messaging :
Events Events

4

4

@crichardson

Microservices enable
continuous delivery/deployment

Process:
Continuous delivery/deployment

Services
testablllty
Enables Enables aﬂd
Successful
Software deployability
Development
Organization: < Architecture:
Small, agile, autonomous, Microservice architecture
cross functional teams Enables

Teams own services

Let's Imagine that you are
building an online store API

createCustomer(creditLimit)

createOrder(customerld, orderTotal)

Customer
findOrdersForCustomer(customerld) VERE gem ent
findRecentCustomers()

Order
Management
REST AP

@crichardson

Retrieve data createCustomer()

from both createOrder()
, @ findOrdersForCustomer() REST AP M
SErVICES findRecentCustomers() ust reserve.
customer’s credit &
AP| Gateway
createCustomer()
REST AP createOrder()
REST API
Customer Essential for loose Order
Service coupling Service
" .
Customer Database Order Database
Customer table Order table
availableCredit orderlotal

@crichardson

No ACID transactions that span
Services

Distributed transactions

BEGIN TRANSACTION Private to the

Order Service

SELECT ORDER_TOTAL
FROM ORDERS WHERE CUSTOMER_ID =7

éELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = 7

INSERT INTO ORDERS ... Private to the

Customer Service

COMMIT TRANSACTION dson

Querying across Services is
not straightforward

anate to Order
Serwce

Prlvate""»to Customer;

SELECT * \)
FROM CUSTOMER ¢, ORDER o

WHERE
€1l = ©,1D
AND c.1d = ?

Find customer and their orders

@crichardson
LSS

Agenda

» [ransactions, queries and microservices
= Managing transactions with sagas
x |mplementing queries with CQRS

= |mplementing transactional messaging

@crichardson
LSS

From a 1987 paper

SAGAS

Hector Garcia-Molina
Kenneth Salem

Department of Computer Science

Princeton University
Princeton, N J 08544

Use Sagas insteac

32
)

4
g St
23
)))
))J
Da®,

020
o
02020

https://microservices.io/patterns/data/saga.html @crichardson

000000000

)©0/000000000000000000000e
) 0000000000000 00000000000

©0000000000000000
0000000000000

2/0/000000000000000000000e

createOrder()

))J‘f

0,

A
~

~
~

©

0000000000000 000000000000

200000000000000000000000
0000000000000 (

Saga design challenges

= AP| design

= Synchronous REST APl initiates asynchronous saga
= \\Vhen to send back a response?

x Rollback = compensating transactions

x Sagas are ACD - No |

» Sagas are interleaved = anomalies, such as |lost updates

. Must use countermeasures

https://www.slideshare.net/chris.e.richardson/saturn-2018-managing-data-consistency-in-a-microservice-architecture-using-sagas

@crichardson

How do the saga participants
communicate’?

« Synchronous createOrder()

communication, e.g. REST REST |
= temporal coupling

= Client and server need to | SOrdQ . |
be both available 2ehiee.

» Customer Service fails = REST | reserveCredit()
retry provided it’s Custom'er
idempotent . Saden

x Order Service fails = Oops

hronous,

NN S SN SN S
0000000000000 00

0000000000000 0000000
) 0000000000000 0000000 0
00000000000000000
0000000000 RRRARR R MR
20000000

1 0000000000000 0000 0

2 0000000000000 00

POOOOCCOOOOLIOOOCOOO
00000000)0000000

jon using async

Collaborat

@crichardson

About the message broker

= At |east once delivery

= Ensures a saga completes when its participants are temporarily
unavailable

» QOrdered delivery
x Mechanism for scaling consumers that preserves ordering e.g.
= Apache Kafka consumer group

= ActiveMQ message group

@crichardson

Saga step = a transaction
local to a service How to

make atomic
without 2PC?

-

L]
~
-
-
-
~N

p 2
L o

- Databasc Message Broker

@crichardson
LSS

How 10 sequence the saga
transactions’?

= After the completion of transaction Ti “something” must
decide what step to execute next

® Success: which T(i+1) - branching

» Failure: C(i- 1)

@crichardson

Choreography: distributed decision making
VS.

Orchestration: centralized decision making

Agenda

x [ransactions, queries and Mmicroservices

x Overview
x Managing transactions with sagas = Choreography
» |mplementing gqueries with CQRS EERnhestaon

= |mplementing transactional messaging

@crichardson
LSS

Choreography-based Create Order

Saga

Create Order

Order created

Wl o

Order
Service

.\

create()

approve()/
reject()

Order events channel

Customer events channel

_/

Order

Credit Reserved CUStO,mer
Service

on/.

Credit Limit Exceeded

reserveCredit()

Message broker

Customer

state
total

availableCredit

Benefits and drawbacks of
choreography

Benefits Drawbacks

x Simple, especially when using event » Decentralized implementation -
sourcing potentially difficult to understand

= Participants are loosely coupled x Cyclic dependencies - services listen

to each other’s events, e.g.
Customer Service must know about
all Order events that affect credit

= Qverloads domain objects, €.g.
Order and Customer know too
much

= Fvents = indirect way to make
something happen

https://github.com/eventuate-examples/eventuate-examples-java-customers-and-orders
LSS

Agenda

x [ransactions, queries and Mmicroservices

x Overview
x Managing transactions with sagas = Choreography
» |mplementing gqueries with CQRS EeOleeen

= |mplementing transactional messaging

@crichardson
LSS

Orchestration-based coordination using

020202002020 0000202000
0000595050500
egeg0g0 0 0 000,

00002000
0505000502050

959,

L)
’ 02020
J‘;Eizgs)
0000 <
e®e05000 000,
02020202020
02020202020 %0
0202020202020 2
0202020202020
0202020202020
0002020002000 20 20,

A saga (orchestrator)

'S a persistent object
that
implements a state machine
and
Invokes the participants

Saga orchestrator behavior

= On create: x On reply:

= |nvokes a saga participant n
» Persists state in database »

= \Vait for a reply

L. oad state from database

Determine which saga
participant to invoke next

Invokes saga participant
Updates its state
Persists updated state

Wait for a reply

CreateOrderSaga orchestrator

Create Order Customer command channel

Customer

,,,,,,,,,,,,

creditLimit
creditReservations

Saga reply channel

» https://qgithub.com/eventuate-tram/eventuate-tram-sagas-examples-customers-and-orders
LSS

Benefits and drawbacks of
orchestration

Benefits Drawbacks
x Centralized coordination = Risk of smart sagas
logic Is easier to understanad directing dumb services

= Reduced coupling, e.g.
Customer Service knows
less. Simply has API for
managing available credit.

® Reduces cyclic
dependencies

Agenda

» [ransactions, queries and microservices
x Managing transactions with sagas
x |mplementing queries with CQRS

= |mplementing transactional messaging

@crichardson
LSS

Queries often retrieve data
owned by multiple services

APl Composition pattern

ersForCustomer(customerld)

''''''''''''

,,,,,,,

526%6%6%6%6%6%6 %6

https://microservices.io/patterns/data/api-composition.html @crichardson
LSS

FiNnd recent, valuable
customers

FROM CUSTOMER c, ORDER o

WHERE
c.1d 0.1D
AND o.ORDER TOTAL > 100000
AND o.STATE = 'SHIPPED'
AND c.CREATION DATE > 7

Not efficiently implemented using APl Composition Sk

APl Composition would be
inefficient

= 1 + N strategy: = Alternative strategy:
= [etch recent customers x [Fetch recent customers
= |terate through customers = [etch recent orders
fetching their shipped |
orders = Join

= 2 roundtrips but

. potentially large datasets
high-latency = inefficient

= | ots of round trips =

Using events to update a queryable
replica = CQRS

Order events

findCustomersAndOrders()

Order events channel

https://microservices.io/patterns/data/cqars.html

@crichardson

Persisting a customer anad
order history in MongoDB

Youn it o (B0 00 D B9 A d 004 ao D 00 080 00000 (o
el Customer

Venesehb it W 3 Informa.tlon

Hemoume” = w2000
}y

Voreerg® -4
MO0000L4E924 50063 0200270000000000" 5 {

Veeaee® 5 WARPPROVEDY
Voecler e 5 WOOOOOL4E92450063 02002700000000001
HorclerToealY 2 {

Weameuime't g MiLZ Sy

}

by
POO0BE 4045 0060 00290 000000000 s Order

"State" : "REJECTED", 4 =
"orderId" : "0000014£9a450063 0a00270000000001", information

TorelerTorta L™ g |
Hamoumer g 3000w

bﬁ%(}\’m&’.ilﬁd - Q&%i&i&h& LOC)MM @crichardson

Command Query Responsibility
Segregation (CQRS)

POST
Commands PUT Queries GET
DELETE
(Materialized)
Aggregate View
Command side data model Query side data model

Events Events

Message broker or Event Store

@crichardson
LSS

Queries = database (type)

POST
PUT GET /customers/id ~ GET /orders?text=xyz RIERRR
DELETE
Aggregate MongoDB ElasticSearch
Command side Query side Query side Query side

Events

Event Store/Message Broker

@crichardson

CQRS views are disposable

x Rebuild when needed from source of truth
= Jsing event sourcing

= (Conceptually) replay all events from beginning of time
= Using traditional persistence

x “ETL” from source of truth databases

@crichardson

Handling replication lag

x | ag between updating command side and CQRS view
® Risk of showing stale data to user
» Fither:

= Update Ul/client-side model without querying

= se updated aggregate version to “wait” for query view to
be updated

@crichardson
LSS

Agenda

» [ransactions, queries and microservices
x Managing transactions with sagas
x |mplementing queries with CQRS

» |mplementing transactional messaging

@crichardson
LSS

Messaging must be
transactional How to

make atomic
without 2PC?

- Service

- Database - Message Broker

@crichardson
LSS

Publish to message broker
first’?

Service
= (Guarantees atomicity
publish
BUT
n SGW'CG Can,t read ItS OWﬂ Message Broker
writes |
658! : : date
x Difficult to write business i
logic

Database

Option: Event sourcing

Event centric approach to
business logic and persistence

http://eventuate.io/

Event sourcing: persists an object
as a seguence of events

create() |
e Order

approve()

ship()

Event Store Event table
Entity . Event Event Event
Id AULEYDS Id type data
101 Order 901 OrderCreated
OB CIrcler 902 OrderApproved
101 Order 903 OrderShipped

@crichardson

Replay events to recreate In memory state

Instantiate with Order
defaUH: > State
constructor
apply(event)
Event store =
database Load events by ID and call apply()

Event Store Event table

Entity . Event Event Event
Id AULEYDS Id type data
101 Order 901 OrderCreated
OB CIrcler 902 OrderApproved
101 Order 903 OrderShipped
@crichardson

YL

Apache Kafka != event store

—vent sourcing gua

rantees: state

change = event is published
Customer
Event store = Seivice
message broker
Supscribe
Event Store Event table
Entity . Event Event Event
Id AULEYDS Id type data
101 Order 901 OrderCreated
OB CIrcler 902 OrderApproved
101 Order 903 OrderShipped
@crichardson

Other benefits of event sourcing

Preserves history of domain objects
Supports temporal gueries
Simplifies retroactive correction

Built-in auditing

Drawbacks of event sourcing

Unfamiliar programming model

—volving the schema of long-lived events

Event store only supports PK-based access
= requires CQRS = less consistent reads

Drawbacks of event sourcing

Good fit for choreography-based sagas

BUT orchestration Is more challenging
=

Use event handler to translate event
iInto command/reply message

Option:

[raditional persistence
(JPA, MyBatis,...)
+
Iransactional outbox pattern

https://github.com/eventuate-tram/eventuate-tram-core g ichardson

Spring Data for JPA example

public class OrderService {

@Autowired
private DomainEventPublisher domainEventPublisher;

@Autowired
private OrderRepository orderRepository;

@Transactional Save order
public Order createOrder(OrderDetails orderDetails)

Order order = Order.createOrder(orderDetail

orderRepository.save(order); f
domainEventPublisher.publish(Order.class, Publish event
order.getId(),

singletonList(new OrderCreatedEvent(order.getId(), orderDetails)));
return order;
}
¥

http://eventuate.io/exampleapps.html e ae s

Transactional Outbox pattern

Neip)

R R e Y ‘ T T
ransaction

Database ? ——
'Transacion /N 0 -
| INSERY UPDATE, DELETE INSERT |
i ORDER table OUTBOX table i e Readt;)blfeTBOX e Publish
E | ' essage

| | | | - 1 €ss g
: s [~ ! Relay Broker
1

- https://microservices.io/patterns/data/transactional-outbox.html
- https://eventuate.io/

MySQL binlog
Postgres WAL

AWS DynamoDB table streams
MongoDB change streams

Order
Service

INSERT INTO OUTBOX

Database

OUTBOX table

Chandeé

Transaction log

Publish

>

>

Transaction log

J

////////////////I////////;y//

Committed inserts into the
OUTBOX table are
recorded in the database’s
transaction log

miner

N

Reads the transaction log

Message
Broker

Polling the message table

MESSAGE
Table

SELECT *FROM MESSAGE...
UPDATE MESSAGE

x Simple
» \Works for all databases Message
- Publisher
= BUT what about polling frequency
_I\/Iessage |
Broker

@crichardson
LSS

Summary

= Use asynchronous messaging to solve distributed data management problems
® Services publish events to implement

= choreography-based sagas

= queries using CQRS views

Services send command/reply messages to implement orchestration-based
sagas

Services must atomically update state and send messages

= Event sourcing

x [ransactional outbox

@crichardson

» @crichardson chris@chrisrichardson.net

With examples in Java

1 (hris Richardson

/“ MANNING

Questi_ons? Get a 40% discount

http:// b.Iy/gotochgo201 9-microservices

