
@crichardson

Not Just Events: Developing
Asynchronous Microservices

Chris Richardson

Founder of Eventuate.io
Founder of the original CloudFoundry.com
Author of POJOs in Action and Microservices Patterns

 @crichardson
chris@chrisrichardson.net
http://learn.microservices.io

Copyright © 2019 Chris Richardson Consulting, Inc. All rights reserved

@crichardson

Presentation goal

Implementing transactions and
queries in a microservice

architecture using
asynchronous messaging

@crichardson

Presentation goal

Microservices > REST
Microservices > Events

Microservices != Event Sourcing
Apache Kafka != Event Store

@crichardson

About Chris

@crichardson

About Chris

Consultant and trainer
focussed on helping

organizations adopt the
microservice architecture

(http://www.chrisrichardson.net/)

@crichardson

About Chris

Founder of a startup that is creating
an open-source/SaaS platform

that simplifies the development of
transactional microservices

(http://eventuate.io)

@crichardson

About Chris

Get a 40% discount:
http://bit.ly/gotochgo2019-microservices

About Chris: microservices.io

Microservices pattern
language

Articles

Code examples

Microservices Assessment
Platform - http://
microservices.io/platform

@crichardson

Agenda

Transactions, queries and microservices

Managing transactions with sagas

Implementing queries with CQRS

Implementing transactional messaging

The microservice architecture
structures

an application as a
set of loosely coupled

services

@crichardson

API

Service = independently deployable
component

Operations

Event
Publisher

Commands

Queries

Synchronous
REST/gRPC

Asynchronous
Messaging

Events

Event
Subscriber

API
Client

Invokes
Operations

Events

Service
Database

@crichardson

Microservices enable
continuous delivery/deployment

Process:
Continuous delivery/deployment

Organization:
Small, agile, autonomous,

cross functional teams

Architecture:
Microservice architecture

Enables

Enables Enables

Successful
Software

Development

Services
=

testability
and

deployability

Teams own services

@crichardson

Let’s imagine that you are
building an online store API

createCustomer(creditLimit)

createOrder(customerId, orderTotal)
findOrdersForCustomer(customerId)

findRecentCustomers()

Order
Management

Customer
Management

REST API
…

@crichardson

Order
Service

createCustomer()
createOrder()
findOrdersForCustomer()
findRecentCustomers()

API Gateway
createCustomer()

createOrder()

Order DatabaseCustomer Database

Order tableCustomer table

REST API

REST API

Essential for loose
coupling

Must reserve
customer’s credit 🤔

Retrieve data
from both

services 🤔

Customer
Service

REST API

availableCredit
….

orderTotal
….

@crichardson

No ACID transactions that span
services

BEGIN TRANSACTION
…
SELECT ORDER_TOTAL
 FROM ORDERS WHERE CUSTOMER_ID = ?
…
SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = ?
…
INSERT INTO ORDERS …
…
COMMIT TRANSACTION

Private to the
Order Service

Private to the
Customer Service

Distributed transactions

@crichardson

Querying across services is
not straightforward

SELECT *
FROM CUSTOMER c, ORDER o
WHERE
 c.id = o.ID
 AND c.id = ?

Private to Customer
Service

Private to Order
Service

Find customer and their orders

@crichardson

Agenda

Transactions, queries and microservices

Managing transactions with sagas

Implementing queries with CQRS

Implementing transactional messaging

@crichardson

From a 1987 paper

@crichardson

Saga

Use Sagas instead of 2PC
Distributed transaction

Service A Service B

Service A

Local
transaction

Service B

Local
transaction

Service C

Local
transaction

X Service C

https://microservices.io/patterns/data/saga.html

@crichardson

Order Service

Create Order Saga

Local transaction

Order

state=PENDING

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service

Local transaction

Order

state=APPROVED

approve
order()

createOrder() Initiates saga

@crichardson

Saga design challenges
API design

Synchronous REST API initiates asynchronous saga

When to send back a response?

Rollback ⇒ compensating transactions

Sagas are ACD - No I

Sagas are interleaved ⇒ anomalies, such as lost updates

Must use countermeasures

https://www.slideshare.net/chris.e.richardson/saturn-2018-managing-data-consistency-in-a-microservice-architecture-using-sagas

How do the saga participants
communicate?

Synchronous
communication, e.g. REST
= temporal coupling

Client and server need to
be both available

Customer Service fails ⇒
retry provided it’s
idempotent

Order Service fails ⇒ Oops

Order
Service

createOrder()

REST

Customer
Service

reserveCredit()

REST

@crichardson

Collaboration using asynchronous,
broker-based messaging

Order Service Customer
Service ….

Message broker

@crichardson

About the message broker
At least once delivery

Ensures a saga completes when its participants are temporarily
unavailable

Ordered delivery

Mechanism for scaling consumers that preserves ordering e.g.

Apache Kafka consumer group

ActiveMQ message group

…

@crichardson

Saga step = a transaction
local to a service

Service

Database Message Broker

update send message/event

How to
make atomic
without 2PC?

@crichardson

How to sequence the saga
transactions?

After the completion of transaction Ti “something” must
decide what step to execute next

Success: which T(i+1) - branching

Failure: C(i - 1)

@crichardson

Choreography: distributed decision making

vs.

Orchestration: centralized decision making

@crichardson

Transactions, queries and microservices

Managing transactions with sagas

Implementing queries with CQRS

Implementing transactional messaging

Overview

Choreography

Orchestration

Agenda

@crichardson

Message broker

Choreography-based Create Order
Saga

Order created

Credit Reserved

Credit Limit Exceeded

Create Order

OR

Customer

availableCredit
...

Order

state
total

create()

reserveCredit()approve()/
reject()

Order events channel

Customer events channel

Order
Service

Customer
Service

Benefits and drawbacks of
choreography
Benefits

Simple, especially when using event
sourcing

Participants are loosely coupled

Drawbacks

Decentralized implementation -
potentially difficult to understand

Cyclic dependencies - services listen
to each other’s events, e.g.
Customer Service must know about
all Order events that affect credit

Overloads domain objects, e.g.
Order and Customer know too
much

Events = indirect way to make
something happen

https://github.com/eventuate-examples/eventuate-examples-java-customers-and-orders

@crichardson

Agenda

Transactions, queries and microservices

Managing transactions with sagas

Implementing queries with CQRS

Implementing transactional messaging

Overview

Choreography

Orchestration

@crichardson

Order Service

Orchestration-based coordination using
command messages

Local transaction

Order

state=PENDING

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service

Local transaction

Order

state=APPROVED

approve
order()

createOrder() CreateOrderSaga

InvokesInvokesInvokes

@crichardson

A saga (orchestrator)
is a persistent object

that
implements a state machine

and
invokes the participants

Saga orchestrator behavior
On create:

Invokes a saga participant

Persists state in database

Wait for a reply

On reply:

Load state from database

Determine which saga
participant to invoke next

Invokes saga participant

Updates its state

Persists updated state

Wait for a reply

…

@crichardson

Order Service

CreateOrderSaga orchestrator

Customer Service

Create Order

Customer

creditLimit
creditReservations
...

Order
state
total…

reserveCredit

CreateOrder
Saga

OrderService

create()

create()
approve()

Credit Reserved

Customer command channel

Saga reply channel

https://github.com/eventuate-tram/eventuate-tram-sagas-examples-customers-and-orders

Benefits and drawbacks of
orchestration
Benefits

Centralized coordination
logic is easier to understand

Reduced coupling, e.g.
Customer Service knows
less. Simply has API for
managing available credit.

Reduces cyclic
dependencies

Drawbacks

Risk of smart sagas
directing dumb services

@crichardson

Agenda

Transactions, queries and microservices

Managing transactions with sagas

Implementing queries with CQRS

Implementing transactional messaging

@crichardson

Queries often retrieve data
owned by multiple services

@crichardson

API Composition pattern

Customer Service

Customer

…

Order Service

Order

…

API Gateway

findOrdersForCustomer(customerId)

GET /customer/id GET /orders?customerId=id

https://microservices.io/patterns/data/api-composition.html

@crichardson

Find recent, valuable
customers

SELECT *
FROM CUSTOMER c, ORDER o
WHERE
 c.id = o.ID
 AND o.ORDER_TOTAL > 100000
 AND o.STATE = 'SHIPPED'
 AND c.CREATION_DATE > ?

Customer
Service

Order Service

Not efficiently implemented using API Composition

API Composition would be
inefficient

1 + N strategy:

Fetch recent customers

Iterate through customers
fetching their shipped
orders

Lots of round trips ⇒
high-latency

Alternative strategy:

Fetch recent customers

Fetch recent orders

Join

2 roundtrips but
potentially large datasets
⇒ inefficient

@crichardson

Using events to update a queryable
replica = CQRS

Order
Service

Customer
Service

Order events

Customer events

findCustomersAndOrders()

Order events channel

Customer events channel

Customer
Order
View

Service

Replica

View
Database

https://microservices.io/patterns/data/cqrs.html

@crichardson

Persisting a customer and
order history in MongoDB

{
 "_id" : "0000014f9a45004b 0a00270000000000",
 "name" : "Fred",
 "creditLimit" : {
 "amount" : "2000"
 },
 "orders" : {
 "0000014f9a450063 0a00270000000000" : {
 "state" : "APPROVED",
 "orderId" : "0000014f9a450063 0a00270000000000",
 "orderTotal" : {
 "amount" : "1234"
 }
 },
 "0000014f9a450063 0a00270000000001" : {
 "state" : "REJECTED",
 "orderId" : "0000014f9a450063 0a00270000000001",
 "orderTotal" : {
 "amount" : "3000"
 }
 }
 }
}

Denormalized = efficient lookup

Customer
information

Order
information

@crichardson

Query side data model

Command Query Responsibility
Segregation (CQRS)

Command side data model

Commands

Aggregate

Message broker or Event Store

Events

Queries

(Materialized)
View

Events

POST
PUT
DELETE

GET

@crichardson

Queries ⇒ database (type)

Command side

POST
PUT
DELETE

Aggregate

Event Store/Message Broker

Events

Query side

GET /customers/id

MongoDB

Query side

GET /orders?text=xyz

ElasticSearch

Query side

GET …

Neo4j

@crichardson

CQRS views are disposable

Rebuild when needed from source of truth

Using event sourcing

(Conceptually) replay all events from beginning of time

Using traditional persistence

“ETL” from source of truth databases

@crichardson

Handling replication lag

Lag between updating command side and CQRS view

Risk of showing stale data to user

Either:

Update UI/client-side model without querying

Use updated aggregate version to “wait” for query view to
be updated

@crichardson

Agenda

Transactions, queries and microservices

Managing transactions with sagas

Implementing queries with CQRS

Implementing transactional messaging

@crichardson

Messaging must be
transactional

Service

Database Message Broker

update publish

How to
make atomic
without 2PC?

Publish to message broker
first?

Guarantees atomicity

BUT

Service can’t read its own
writes

Difficult to write business
logic

Service

Database

Message Broker

update

publish

@crichardson

Option: Event sourcing
=

Event centric approach to
business logic and persistence

http://eventuate.io/

@crichardson

Event sourcing: persists an object
as a sequence of events

Event table

Entity type Event
id

Entity
id

Event
data

Order 902101 …OrderApproved

Order 903101 …OrderShipped

Event
type

Order 901101 …OrderCreated

Order
create()

approve()
ship()

Event Store

@crichardson

Replay events to recreate in memory state
Order

state

apply(event)

Event table

Entity type Event
id

Entity
id

Event
data

Order 902101 …OrderApproved

Order 903101 …OrderShipped

Event
type

Order 901101 …OrderCreated

Event Store

Load events by ID and call apply()

Instantiate with
default

constructor

Event store =
database

@crichardson

FYI:

Apache Kafka != event store

@crichardson

Event sourcing guarantees: state
change ⇒ event is published

Event table

Entity type Event
id

Entity
id

Event
data

Order 902101 …OrderApproved

Order 903101 …OrderShipped

Event
type

Order 901101 …OrderCreated

Event Store

Customer
Service

Subscribe

Event store =
message broker

@crichardson

Preserves history of domain objects

Supports temporal queries

Simplifies retroactive correction

Built-in auditing

Other benefits of event sourcing

@crichardson

Unfamiliar programming model

Evolving the schema of long-lived events

Event store only supports PK-based access
⇒ requires CQRS ⇒ less consistent reads

Drawbacks of event sourcing

@crichardson

Good fit for choreography-based sagas
BUT orchestration is more challenging

⇒
Use event handler to translate event

into command/reply message

Drawbacks of event sourcing

@crichardson

 Option:

Traditional persistence
(JPA, MyBatis,…)

 +
Transactional outbox pattern

https://github.com/eventuate-tram/eventuate-tram-core

@crichardson

Spring Data for JPA example

Publish event

Save order

http://eventuate.io/exampleapps.html

@crichardson

Transactional Outbox pattern

https://microservices.io/patterns/data/transactional-outbox.html
https://eventuate.io/

DELETE

?Database

Order Service

Transaction

OUTBOX table

…

ORDER table

…

INSERTINSERT, UPDATE, DELETE

Message
Broker

Message
Relay

1

2 Read OUTBOX
table

3 Publish

ACID
transaction

@crichardson

Transaction log tailing

DELETE

Order
Service

Database

OUTBOX table

Transaction log

Update

Transaction log
miner Message

Broker

PublishChanges

Committed inserts into the
OUTBOX table are

recorded in the database’s
transaction log

INSERT INTO OUTBOX ….

Reads the transaction log

MySQL binlog
Postgres WAL

AWS DynamoDB table streams
MongoDB change streams

@crichardson

Polling the message table

Simple

Works for all databases

BUT what about polling frequency

MESSAGE
Table

Message
Publisher

Message
Broker

SELECT * FROM MESSAGE…
UPDATE MESSAGE

@crichardson

Summary
Use asynchronous messaging to solve distributed data management problems

Services publish events to implement

choreography-based sagas

queries using CQRS views

Services send command/reply messages to implement orchestration-based
sagas

Services must atomically update state and send messages

Event sourcing

Transactional outbox

@crichardson

@crichardson chris@chrisrichardson.net

http://bit.ly/gotochgo2019-microservices
Questions? Get a 40% discount

