Rust - Access All Areas

Florian Gilcher
goto Amsterdam 2019

CEO and Rust Trainer
Ferrous Systems GmbH

Joe Armstrong

+ | read "Programming Erlang” in 2009
 Learned from Joe's how concepts, strictly applied, can help solve problems
« In this case: shared nothing and message passing

« Sometimes, you have to invent a language for it

Whoami

Florian Gilcher

https://twitter.com/argorak

https://github.com/skade

CEO https://asquera.de, https://ferrous-systems.com
Rust Programmer and Trainer: https://rust-experts.com
Mozillian

Previously 10 years of Ruby community work

Whoami

- Started learning Rust in 2013

+ Mostly out of personal curiosity

+ Co-Founded the Berlin usergroup
 Organized RustFest and OxidizeConf

* Project member since 2015, mostly Community team, now Core, lead website
team

Endorsements

| don’t trust any programmer that deliberately uses Ruby or Java.

- Christopher Spencer, goto YouTube channel

The Rust project

I'm presenting the work of 7180 team members and over 5000 contributors over
the last years, culminating in a large release in December last year.

Rust was released in May 2015, and has been growing ever since.

A language empowering everyone to build reliable and efficient software.

- Safe
» Concurrent
e Fast

* Performance
* Reliability
+ Productivity

10

A mission

What do we need to bring that to everyone?

« A language that scales up and down

« Small targets to large targets
« High abstractions, low abstractions

+ Useful Abstractions
« That can be peeked through
« Cost nothing
« Ergonomics and care
« Unified tooling
- Extensible tooling
« Strict backwards compatibility

1

Programming problems to solve

« Memory safety

« Resource consumption

+ Resource handling

« Concurrency and parallelism
+ Dealing with external data

* Resilience

* Integration into existing code

12

Rust 2018

Rust 2018 is a new language profile to enable all of the above.

« Enabled since December 2018
« No breaking change

 Old code is still fully supported

13

Area

Rust is

« A C/C++ Competitor...
« ... that is statically memory safe ...

« ... with features making it competitive with languages like Java, Scala and Go.

14

Model

Rust is

A native programming language
A Values and Functions language
Ahead of time compiled

Without active runtime
Memory-Safe

Generic

Detailled error handling, no catchable exceptions

15

What if we had a language that's a nitpicker, but in a good way?

16

Code example

struct Point {

X: 132,
y: 132,
}
fn main() {

let point: Point = Point { x: 1, y: 1 };
let heap: Box<Point> = Box::new(point);

// look, no deallocation!

Ownership

« Any value introduced into a Rust program is exlusively owned
« Ownership can be moved
« When a value runs out of scope, it is dropped

« This moment is clearly defined

Code example

struct Point {

X: 132,
y: 132,
}
fn main() {

let point: Point = Point { x: 1, y: 1 };
let heap: Box<Point> = Box::new(point);

// look, no deallocation!

Ownership Is Resource Management

* Rust values have a trackable region in memory where they are active
« This means, they can be used for resource management

« Ownership manages resources, memory is always one of them

20

Example: File management

use std::io::Read;
use std::fs::File;

pub fn read_file(path: &str) -> Result<String, std::io::Error> {
let mut file: File = File::open(path)?;

let mut buffer = String::new();
file.read_to_string(&mut buffer)?;

Ok(buffer)

When the file runs out of scope, it is also closed automatically. ? is the error
handling operator.

21

enums and Results

enum Result<T,E> {
ok(T),
Err(E)

}

fn may_fail() -> Result<String, std::io::Error> {
unimplemented! ()

}
fn main() {
match may_fail {
Ok(string) => println!("worked: {}", string),
Err(e) => println!("{:?}", e)
}
}

Results are plain data.

22

Example: Reuse of a resource

}

use std::io::Read;
use std::fs::File;

pub fn print_file_and_close(mut file: File)
-> Result<(), std::io::Error> {

let mut buffer = String::new();
file.read_to_string(&mut buffer)?;

println!("{}", buffer);

ok(())

fn main() -> Result<(), std::io::Error> {

let file = File::open("Cargo.toml")?;
print_file_and_close(file);
print_file_and_close(file);

0k(())

23

Example: Reuse of a resource

error[E0382]: use of moved value: “file~
--> examples/ownership_print.rs:16:26

AAAA

14 | let file = File::open("Cargo.toml")?;

| ---- move occurs because “file' has type “std::fs::File”, which does not implement the “Copy” {
15 | print_file_and_close(file);

| ---- value moved here
16 | print_file_and_close(file);

|

value used here after move

rait

24

Detour: Scope based management with closures

def read_file()
File::open("Cargo.toml") do |f]
file.each_line { [1] puts 1 }
end
end

read_file

25

Detour: Scope based management with closures

Let's break things!

end

def read_file()

iter = nil;
File::open("Cargo.toml") do |f]|
iter = f.each_line

end

iter.each { |1| puts 1}

read_file

26

Detour: Scope based management with closures

Oops.

examples/read_file_broken.rb:8:in “each_line': closed stream (IOError)
from examples/read_file_broken.rb:8:in “each'
from examples/read_file_broken.rb:8:in “read_file'
from examples/read_file_broken.rb:11:in “<main>'

27

What happened

« We're referencing the file through an iterator

« We move the iterator out of the scope

The file is closed
« We try to iterate -> BANG!

28

Let’s try this in Rust!

Rust also has references!

pub fn read

use std::io::BufReader;
use std::fs::File;

_file(path: &str) -> Result<BufReader<smut File>, std::io::Error> {
let mut file: File = File::open(path)?;

let reader: BufReader<Smut File> = BufReader::new(&mut file);

Ok(reader)
}
fn main() {
read_file("examples/ownership_file.rs");
}

29

Let’s try this in Rust!

error[E0515]: cannot return value referencing local variable “file®
--> counter_examples/ownership_breakage.rs:9:5
|
71 let reader: BufReader<&émut File> = BufReader::new(&mut file);
————————— “file is borrowed here

Ok(reader)

AAAAAAAAAN

I
8 |
9 |

| returns a value referencing data owned by the current function
error: aborting due to previous error

For more information about this error, try “rustc --explain E0515°.

30

Conclusion

« We're referencing the file through a buffered reader

« We move the reader out of the scope by returning

The file is closed, because the scope ends

« The compiler detects this as illegal

31

Borrowing

References in Rust are subject to a system called Borrowing

 References cannot outlive what they are borrowed from
+ Mutable and immutable references cannot alias
« Mutable references have to be unique

+ References are always valid

Mutable state and shared state in Rust is allowed, but not shared mutable state.

32

Illegal states

Files in Rust are defined in such a way that they are always open.

Rust gives you methods to make illegal state irrepresentable. Even if you wanted
a File API that represents both open and closed, it would allow you to define

which APl is legal in both cases.

33

In contrast, Ruby’'s and other languages approach is about not forgetting the
close call.

34

Borrowing

use std::io::prelude::+;
use std::io::BufReader;
use std::fs::File;

pub fn read_file(path: &str) -> Result<BufReader<File>, std::io::Error> {
let file: File = File::open(path)?;

let reader: BufReader<File> = BufReader::new(file);

Ok(reader)

}

fn main() -> Result<(), std::io::Error> {
let source = read_file("Cargo.toml")?;

let mut i = 0;

for line in source.lines() {
i+=1;
println!("{}: {}", i, line?);

Important

« Ownership here is strict: BufReader now owns the file
» No one else has access to the file during that time!

36

Rust APIs often come in threes:

* Owned
» Borrowed
» Mutably borrowed

37

Example: Iterators

fn main() {
let vec = vec![1,2,3];
let iter = vec.into_iter();

for i in iter {
println!("{}", 1);
}

38

Example: Iterators

fn main() {
let vec = vec![1,2,3];
let iter = vec.iter();

for i in iter {
println!("{}", 1);
}

39

Example: Iterators

fn main() {
let mut vec = vec![1,2,3];
let iter = vec.iter_mut();

for i in iter {
*] += 1;

}

println!("{:?}", vec) // [2, 3, &]

40

Parallel Processing

 Great frameworks for parallel programming
« Mixable with concurrent approaches
« Safe from data races

41

Parallel Processing: Example

fn sum_of_squares(input: &[i32]) -> i32 {
input.iter() // <-- just change that!
.map(l&il 1 * 1)

.sum()
}
fn main() {
sum_of_squares(&[1,2,31);
}

42

Parallel Processing: Example

use rayon::prelude::x*;

fn sum_of_squares(input: &§[132]) -> i32 {
input.par_iter()
.map(|&i| i * i)

.sum()
}
fn main() {
sum_of_squares(s[1,2,31);
}

Boring, isn't it?

43

Parallel Processing: Libraries

« crossbeam, base types for async:
https://github.com/crossbeam-rs/crossbeam

« rayon, easy parallel processing: https://github.com/rayon-rs/rayon

44

Concurrent Programming

« Multiple frameworks for concurrent programming
« Mixable with parallel approaches
« Safe from data races

45

Concurrent Programming: Currently

fn main() {
let addr = "127.0.0.1:7878".parse().unwrap();
let listener = TcplListener::bind(&addr).unwrap();

let server = listener.incoming().map_err(|err| {
println!("stream error = {:?}", err);
}).for_each(|socket| {
let buffer = Vec::new();

let s = String::from_utf8(buffer).unwrap();
let parsed = protocol::parse(&s).unwrap();
println!("{:?}", parsed);
ok(())

)

.map_err(|err| {
println!("reading error = {:?}", err);

19

b

read_to_end(socket, buffer).and_then(|(socket, buffer)| {

46

Concurrent Programming: Currently

This is workable, but verbose and very error-prone.

47

Concurrent Programming: From August on

#lruntime::main]
async fn main() -> Result<(), ServerError> {
let mut incoming = {
// set up a TCP server...
b

let rced_storage = Arc::new(Mutex::new(Vec::new()));

while let Some(stream) = incoming.next().await {
let storage = rced_storage.clone();

runtime: :spawn(async move {
handle(stream?, &storage).await?;

Ok::<(), ServerError>(())
}).await?;

}
0k(())

48

Concurrent Programming: Libraries

- actix and actix web: https://actix.rs/
« tokio/romio: concurrent event reactors

« runtime library facade: https://github.com/rustasync/runtime

49

Aside: Rust Send & Sync

Rust controls concurrency through 2 additional properties: Send & Sync.

« Send means that data can be passed between concurrent units
« Sync means that data can be shared between concurrent units

Both properties are independent of the parallelism or concurrency library in use.

50

Example: Threading

struct Counter {
count: u32
}
fn main() {
let mut counter = Counter { count: 0 };
for _ in 1..=3 {
std::thread::spawn(move || {
counter.count += 1
});
}
}

51

Example: Threading

error[E0382]: use of moved value: [Jcounter|]
--> examples/threading_error.rs:9:28

6 | let mut counter = Counter { count: 0 };
I] move occurs because DcounterD has type DCounterD, which does not implement the DC
trait
9 | std::thread: :spawn(move || {
et value moved into closure here, in previous iteration of loop
10 | counter.count += 1
I

——————— use occurs due to use in closure

52

Example: Threading

use std::rc::Rc;
struct Counter {
count: u32
}
fn main() {
let mut counter = Rc::new(Counter { count: 0 });
for _ in 1..=3 {
let thread_handle = counter.clone();
std::thread::spawn(move || {
thread_handle.count += 1
b
}
}

53

Example: Threading

error[E0277]:

I
11 |
I
|

“std::rc::Rc<Counter>" cannot be sent between threads safely

--> examples/threading_error_rc.rs:11:9

std::thread::spawn(move || {
__________________ “std::rc::Rc<Counter>’ cannot be sent between threads safely

54

Example: Threading

use std::sync::Arc;
struct Counter {
count: u32
}
fn main() {
let mut counter = Arc::new(Counter { count: 0 });
for _ in 1..=3 {
let mut thread_handle = counter.clone();
std::thread::spawn(move || {
thread_handle.count += 1
b
}
}

55

Example: Threading

error[E0594]: cannot assign to data in a & reference
--> examples/threading_error_arc.rs:12:13
|
12 | thread_handle.count += 1
[e cannot assign

56

Example: Threading

use std::sync::{Arc,Mutex, MutexGuard};
struct Counter {
count: u32
}
fn main() {
let counter = Arc::new(Mutex::new(Counter { count: 0 }));
for _ in 1..=3 {
let thread_handle = counter.clone();
std::thread: :spawn(move || {
let mut lock: MutexGuard<_> =
thread_handle.lock().unwrap();
lock.count += 1
b
}
}

57

Practical examples

58

CLI programs

+ Shippable without runtime

+ Memory-conserving with fast startup time
 Fast and convenient parsers

« Free choice of concurrency patterns

« Ownership makes external resource management easy

59

CLI: Code Example

use structopt::StructOpt;

#[derive(StructOpt)]

struct Cli {
/// The pattern to look for
pattern: String,
/// The path to the file to read
#lstructopt(parse(from_os_str))]
path: std::path::PathBuf,

}

fn main() -> Result<(), std::io::Error> {
let args = Cli::from_args();
let content = std::fs::read_to_string(&args.path)?;

for line in content.lines() {
if line.contains(&args.pattern) {
println!("{}", line);
}

60

CLI: Serialization/Deserialization

use serde::{Serialize, Deserialize};
#[derive(Serialize, Deserialize, Debug)]
struct Point { x: i32, y: i32 }

fn main() {
let point = Point { x: 1, y: 2 };

let serialized = serde_json::to_string(&point).unwrap();
// Prints serialized = {"x":1,"y":2}
println!("serialized = {}", serialized);

let deserialized: Result<Point, _> = serde_json::from_str(&serialized);
// Prints deserialized = Ok(Point { x: 1, y: 2 })
println!("deserialized = {:?}", deserialized);

Type-informed serialization and deserialization, generated at compile-time!

61

CLI: Serialization/Deserialization

#[derive(Serialize, Deserialize, Debug)]
#[serde(rename(serialize = "point"))]
struct Point {

#[serde(default)]

x: 132,

#[serde(default)]

y: i32,
}

Opt-In customization, including custom deserialization code.

62

« No runtime overhead

 Great cross-compiling support

63

Embedded Linux: Fields of use

» |oT Gateways
* Home routers
* Industry control systems

« Cars?

64

Embedded Linux: Cross-Compiling

$ rustup target install aarch64-unknown-linux-musl
$ cargo build --target aarch64-unknown-linux-musl

As long as a target platform linker and libc is available.

65

Bare-Metal embedded

Rust stabilized bare metal embedded support in 2018
- Stabilisation of all low-level details: replacable error handlers etc.

Great support for safe patterns on embedded devices
Relies on existing tooling
Should be considered young, but solid

66

Example: Minimal Embedded Rust

//' Minimal “cortex-m-rt’ based program

#![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
#![no_std]

extern crate cortex_m_rt as rt;
extern crate panic_halt;

use rt::entry;

// the program entry point
#lentry]
fn main() -> ! {

loop {}

}

67

Example: Memory mapping

mod syst {

/17
pub
/17
pub
/17
pub
/17
pub

}

}

#lrepr(C)]
pub struct RegisterBlock {

Control and Status
csr: RwW<u32>,
Reload Value

rvr: RW<u32>,
Current Value

cvr: RW<u32>,
Calibration Value
calib: RO<u32>,

fn place_syst() -> #const syst::RegisterBlock {
OXEOOO_EO010 as *const _

68

Using Rust semantics

+ Rust on Embedded uses Ownership to handle device access
« Uses metaprogramming facilities to provide convenience

 Resulting code is board-specific

69

Bare-Metal embedded: Options

« Directly use a board package
+ see https://github.com/rust-embedded for supported boards

+ Use RTFM: https://github.com/japaric/cortex-m-rtfm
« Use a full embedded operating system: https://www.tockos.org/
* It's possible to use Rust on top of C-based embedded OSes like RIOT

70

Missing

Flashing and debugging with Rust or fully Rust-integrated targets. This is not a
language problem!

Ul

Shared library use

+ Rust can generate static an dynamic libraries
« Punctual speedup of larger programs

+ Code sharing between different platforms
 Classic C usecase, reuses infrastructure

« Often used on mobile for shared libraries between Android an i0OS

72

Shared library use: Example

#[derive(Debug)]
#[repr(C)]
pub struct Point {
x: 132,
y: i32
}

#[no_mangle]

pub extern "C" fn new_point(x: 132, y: i32) -> *mut Point {
let p = Box::new(Point { x: x, y: vy });
Box::into_raw(p)

}

#[no_mangle]
pub extern "C" fn destroy_point(p: *mut Point) {
unsafe { Box::from_raw(p) };

}

#[no_manglel]
pub extern "C" fn inspect_point(p: &mut Point) {

73

Shared library use: Example

require 'ffi'

class Point < FFI::Struct
layout :int32, :int32
end

module LibPoint
extend FFI::Library
ffi_lib './libpoint.so'
attach_function :new_point, [:int32, :int32], :pointer
attach_function :destroy_point, [:pointer], :void
attach_function :inspect_point, [:pointer], :void

end

ptr = LibPoint.new_point(1, 1)

point = Point.new ptr
LibPoint.inspect_point point.pointer
LibPoint.destroy_point point.pointer

74

Shared library us

75

Generators

« Rust program -> C/C++ Header

« C/C++ program -> Rust bindings

- Specialized tooks for Python/Ruby/Node
* Rust program -> WASM

75

WebAssembly - WASM

« A machine independent binary format that can be run in a sandbox
« Almost as efficient as native code

« Rust is the prime langage for it

76

WebAssembly - WASM: Example

#[wasm_bindgen]
extern {
fn alert(s: &str);

}

#[wasm_bindgen]
pub fn greet() {
alert("Hello, wasm-game-of-life!");

}

77

WebAssembly - WASM: Example

« This is compiled through the standard cross-compilation toolchain
+ Additional post-processing to generate a JS layer for direct access

78

WebAssembly - WASM: Example (JS Side)

import * as wasm from './wasm_hello_world';

export function greet() {
return wasm.greet();

}

79

Notes on WebAssembly

« WebAssembly is currently a minimum viable product
+ A lot of things are down the road

80

WebAssembly - WASM: Users

+ Cloudflare Workers: https://workers.cloudflare.com/
+ Deployed in all major browsers

81

Network programming

There’s an extensive community around network programming.

- A zero-allocation userlevel TCP stack: https://github.com/m-labs/smoltcp
« SOzu, a Rust reverse proxy: https://github.com/sozu-proxy/sozu

« LinkerD, a service mesh for microservices: https://linkerd.io/

82

Other usecases

« Gaming
« Embark Studios, Amethyst Game engine
« Infrastructure Software

« Amazon Firecracker
« Chef Habitat

83

Missing: Safety Critical

« Formal proofing of the base language
« Certification of the compiler next?

 Sealed Rust: an attempt to bring certification of the Rust compiler on track

https://ferrous-systems.com/blog/sealed-rust-the-pitch/

84

* Performance
* Reliability
+ Productivity

85

Performance

« Alanguage as fast as C/C++
+ With safety while doing the fast thing
« Abstractions with no overhead

86

Reliability

* Rust allows expression of complex abstract concepts...
+ .. on a close-to-the metal basis ...

* ... with type-level support for resource management.

87

Productivity

 Great tooling
- Great documentation: https://rust-lang.org/learning

 extensive stdlib docs
« 9 books: language, embedded, cli tooling, internals...

« A language well feasible for performance refactoring

88

Programming problems to solve

« Memory safety - through the type system

+ Resource consumption - by working with values and references
+ Resource handling - through Ownership

« Concurrency and parallelism - through the type system

« Dealing with external data - through type informed frameworks
* Resilience - making illegal state irrepresentable

* Integration into existing code - through C integration

89

Ergonomics approach

General reminder that if you encounter a rustc diagnostic error that
confuses you for more than a minute, it is a bug. File tickets, we take
them seriously. We want rustc to be your first tutor.

- Estaban Kuber, responsible for diagnostics

90

Does that work?

« We're seeing Rust used in many ways
+ Roughly 33% influx from each

 Functional languages
« Dynamic languages
+ Systems languages

91

The cost of switching languages

We always consider switching language a high cost, while bringing another tool to
the belt is cheap.

92

Conclusion

Rust is a language with well-chosen compile-time guarantees and simple runtime
semantics that allows you to use it in any area of your product.

93

Thank you!

« https://twitter.com/argorak

* https://github.com/skade

« https://speakerdeck.com/skade

« florian.gilcher@ferrous-systems.com
« https://ferrous-systems.com

« https://rust-experts.com

94

