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Joe Armstrong

+ | read "Programming Erlang” in 2009
 Learned from Joe's how concepts, strictly applied, can help solve problems
« In this case: shared nothing and message passing

« Sometimes, you have to invent a language for it
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https://github.com/skade

CEO https://asquera.de, https://ferrous-systems.com
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Previously 10 years of Ruby community work



Whoami

- Started learning Rust in 2013

+ Mostly out of personal curiosity

+ Co-Founded the Berlin usergroup
 Organized RustFest and OxidizeConf

* Project member since 2015, mostly Community team, now Core, lead website
team



Endorsements

| don’t trust any programmer that deliberately uses Ruby or Java.

- Christopher Spencer, goto YouTube channel



The Rust project

I'm presenting the work of 7180 team members and over 5000 contributors over
the last years, culminating in a large release in December last year.

Rust was released in May 2015, and has been growing ever since.



A language empowering everyone to build reliable and efficient software.



- Safe
» Concurrent
e Fast



* Performance
* Reliability
+ Productivity
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A mission

What do we need to bring that to everyone?

« A language that scales up and down

« Small targets to large targets
« High abstractions, low abstractions

+ Useful Abstractions
« That can be peeked through
« Cost nothing
« Ergonomics and care
« Unified tooling
- Extensible tooling
« Strict backwards compatibility
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Programming problems to solve

« Memory safety

« Resource consumption

+ Resource handling

« Concurrency and parallelism
+ Dealing with external data

* Resilience

* Integration into existing code
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Rust 2018

Rust 2018 is a new language profile to enable all of the above.

« Enabled since December 2018
« No breaking change

 Old code is still fully supported
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Area

Rust is

« A C/C++ Competitor...
« ... that is statically memory safe ...

« ... with features making it competitive with languages like Java, Scala and Go.
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Model

Rust is

A native programming language
A Values and Functions language
Ahead of time compiled

Without active runtime
Memory-Safe

Generic

Detailled error handling, no catchable exceptions
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What if we had a language that's a nitpicker, but in a good way?
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Code example

struct Point {

X: 132,
y: 132,
}
fn main() {

let point: Point = Point { x: 1, y: 1 };
let heap: Box<Point> = Box::new(point);

// look, no deallocation!




Ownership

« Any value introduced into a Rust program is exlusively owned
« Ownership can be moved
« When a value runs out of scope, it is dropped

« This moment is clearly defined



Code example

struct Point {

X: 132,
y: 132,
}
fn main() {

let point: Point = Point { x: 1, y: 1 };
let heap: Box<Point> = Box::new(point);

// look, no deallocation!




Ownership Is Resource Management

* Rust values have a trackable region in memory where they are active
« This means, they can be used for resource management

« Ownership manages resources, memory is always one of them
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Example: File management

use std::io::Read;
use std::fs::File;

pub fn read_file(path: &str) -> Result<String, std::io::Error> {
let mut file: File = File::open(path)?;

let mut buffer = String::new();
file.read_to_string(&mut buffer)?;

Ok(buffer)

When the file runs out of scope, it is also closed automatically. ? is the error
handling operator.
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enums and Results

enum Result<T,E> {
ok(T),
Err(E)

}

fn may_fail() -> Result<String, std::io::Error> {
unimplemented! ()

}
fn main() {
match may_fail {
Ok(string) => println!("worked: {}", string),
Err(e) => println!("{:?}", e)
}
}

Results are plain data.
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Example: Reuse of a resource

}

use std::io::Read;
use std::fs::File;

pub fn print_file_and_close(mut file: File)
-> Result<(), std::io::Error> {

let mut buffer = String::new();
file.read_to_string(&mut buffer)?;

println!("{}", buffer);

ok(())

fn main() -> Result<(), std::io::Error> {

let file = File::open("Cargo.toml")?;
print_file_and_close(file);
print_file_and_close(file);

0k(())
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Example: Reuse of a resource

error[E0382]: use of moved value: “file~
--> examples/ownership_print.rs:16:26

AAAA

14 | let file = File::open("Cargo.toml")?;

| ---- move occurs because “file' has type “std::fs::File”, which does not implement the “Copy” {
15 | print_file_and_close(file);

| ---- value moved here
16 | print_file_and_close(file);

|

value used here after move

rait
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Detour: Scope based management with closures

def read_file()
File::open("Cargo.toml") do |f]
file.each_line { [1] puts 1 }
end
end

read_file
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Detour: Scope based management with closures

Let's break things!

end

def read_file()

iter = nil;
File::open("Cargo.toml") do |f]|
iter = f.each_line

end

iter.each { |1| puts 1}

read_file
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Detour: Scope based management with closures

Oops.

examples/read_file_broken.rb:8:in “each_line': closed stream (IOError)
from examples/read_file_broken.rb:8:in “each'
from examples/read_file_broken.rb:8:in “read_file'
from examples/read_file_broken.rb:11:in “<main>'
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What happened

« We're referencing the file through an iterator

« We move the iterator out of the scope

The file is closed
« We try to iterate -> BANG!
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Let’s try this in Rust!

Rust also has references!

pub fn read

use std::io::BufReader;
use std::fs::File;

_file(path: &str) -> Result<BufReader<smut File>, std::io::Error> {
let mut file: File = File::open(path)?;

let reader: BufReader<Smut File> = BufReader::new(&mut file);

Ok(reader)
}
fn main() {
read_file("examples/ownership_file.rs");
}
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Let’s try this in Rust!

error[E0515]: cannot return value referencing local variable “file®
--> counter_examples/ownership_breakage.rs:9:5
|
71 let reader: BufReader<&émut File> = BufReader::new(&mut file);
————————— “file is borrowed here

Ok(reader)

AAAAAAAAAN

I
8 |
9 |

| returns a value referencing data owned by the current function
error: aborting due to previous error

For more information about this error, try “rustc --explain E0515°.
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Conclusion

« We're referencing the file through a buffered reader

« We move the reader out of the scope by returning

The file is closed, because the scope ends

« The compiler detects this as illegal
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Borrowing

References in Rust are subject to a system called Borrowing

 References cannot outlive what they are borrowed from
+ Mutable and immutable references cannot alias
« Mutable references have to be unique

+ References are always valid

Mutable state and shared state in Rust is allowed, but not shared mutable state.
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Illegal states

Files in Rust are defined in such a way that they are always open.

Rust gives you methods to make illegal state irrepresentable. Even if you wanted
a File API that represents both open and closed, it would allow you to define

which APl is legal in both cases.
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In contrast, Ruby’'s and other languages approach is about not forgetting the
close call.
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Borrowing

use std::io::prelude::+;
use std::io::BufReader;
use std::fs::File;

pub fn read_file(path: &str) -> Result<BufReader<File>, std::io::Error> {
let file: File = File::open(path)?;

let reader: BufReader<File> = BufReader::new(file);

Ok(reader)

}

fn main() -> Result<(), std::io::Error> {
let source = read_file("Cargo.toml")?;

let mut i = 0;

for line in source.lines() {
i+=1;
println!("{}: {}", i, line?);




Important

« Ownership here is strict: BufReader now owns the file
» No one else has access to the file during that time!
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Rust APIs often come in threes:

* Owned
» Borrowed
» Mutably borrowed
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Example: Iterators

fn main() {
let vec = vec![1,2,3];
let iter = vec.into_iter();

for i in iter {
println!("{}", 1);
}
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Example: Iterators

fn main() {
let vec = vec![1,2,3];
let iter = vec.iter();

for i in iter {
println!("{}", 1);
}
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Example: Iterators

fn main() {
let mut vec = vec![1,2,3];
let iter = vec.iter_mut();

for i in iter {
*] += 1;

}

println!("{:?}", vec) // [2, 3, &]
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Parallel Processing

 Great frameworks for parallel programming
« Mixable with concurrent approaches
« Safe from data races
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Parallel Processing: Example

fn sum_of_squares(input: &[i32]) -> i32 {
input.iter() // <-- just change that!
.map(l&il 1 * 1)

.sum()
}
fn main() {
sum_of_squares(&[1,2,31);
}
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Parallel Processing: Example

use rayon::prelude::x*;

fn sum_of_squares(input: &§[132]) -> i32 {
input.par_iter()
.map(|&i| i * i)

.sum()
}
fn main() {
sum_of_squares(s[1,2,31);
}

Boring, isn't it?
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Parallel Processing: Libraries

« crossbeam, base types for async:
https://github.com/crossbeam-rs/crossbeam

« rayon, easy parallel processing: https://github.com/rayon-rs/rayon
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Concurrent Programming

« Multiple frameworks for concurrent programming
« Mixable with parallel approaches
« Safe from data races
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Concurrent Programming: Currently

fn main() {
let addr = "127.0.0.1:7878".parse().unwrap();
let listener = TcplListener::bind(&addr).unwrap();

let server = listener.incoming().map_err(|err| {
println!("stream error = {:?}", err);
}).for_each(|socket| {
let buffer = Vec::new();

let s = String::from_utf8(buffer).unwrap();
let parsed = protocol::parse(&s).unwrap();
println!("{:?}", parsed);
ok(())

)

.map_err(|err| {
println!("reading error = {:?}", err);

19

b

read_to_end(socket, buffer).and_then(|(socket, buffer)| {
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Concurrent Programming: Currently

This is workable, but verbose and very error-prone.
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Concurrent Programming: From August on

#lruntime::main]
async fn main() -> Result<(), ServerError> {
let mut incoming = {
// set up a TCP server...
b

let rced_storage = Arc::new(Mutex::new(Vec::new()));

while let Some(stream) = incoming.next().await {
let storage = rced_storage.clone();

runtime: :spawn(async move {
handle(stream?, &storage).await?;

Ok::<(), ServerError>(())
}).await?;

}
0k(())
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Concurrent Programming: Libraries

- actix and actix web: https://actix.rs/
« tokio/romio: concurrent event reactors

« runtime library facade: https://github.com/rustasync/runtime
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Aside: Rust Send & Sync

Rust controls concurrency through 2 additional properties: Send & Sync.

« Send means that data can be passed between concurrent units
« Sync means that data can be shared between concurrent units

Both properties are independent of the parallelism or concurrency library in use.
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Example: Threading

struct Counter {
count: u32
}
fn main() {
let mut counter = Counter { count: 0 };
for _ in 1..=3 {
std::thread::spawn(move || {
counter.count += 1
});
}
}
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Example: Threading

error[E0382]: use of moved value: [Jcounter|]
--> examples/threading_error.rs:9:28

6 | let mut counter = Counter { count: 0 };
I ] move occurs because DcounterD has type DCounterD, which does not implement the DC
trait
9 | std::thread: :spawn(move || {
et value moved into closure here, in previous iteration of loop
10 | counter.count += 1
I

——————— use occurs due to use in closure
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Example: Threading

use std::rc::Rc;
struct Counter {
count: u32
}
fn main() {
let mut counter = Rc::new(Counter { count: 0 });
for _ in 1..=3 {
let thread_handle = counter.clone();
std::thread::spawn(move || {
thread_handle.count += 1
b
}
}
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Example: Threading

error[E0277]:

I
11 |
I
|

“std::rc::Rc<Counter>" cannot be sent between threads safely

--> examples/threading_error_rc.rs:11:9

std::thread::spawn(move || {
__________________ “std::rc::Rc<Counter>’ cannot be sent between threads safely
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Example: Threading

use std::sync::Arc;
struct Counter {
count: u32
}
fn main() {
let mut counter = Arc::new(Counter { count: 0 });
for _ in 1..=3 {
let mut thread_handle = counter.clone();
std::thread::spawn(move || {
thread_handle.count += 1
b
}
}
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Example: Threading

error[E0594]: cannot assign to data in a &  reference
--> examples/threading_error_arc.rs:12:13
|
12 | thread_handle.count += 1
[ e cannot assign
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Example: Threading

use std::sync::{Arc,Mutex, MutexGuard};
struct Counter {
count: u32
}
fn main() {
let counter = Arc::new(Mutex::new(Counter { count: 0 }));
for _ in 1..=3 {
let thread_handle = counter.clone();
std::thread: :spawn(move || {
let mut lock: MutexGuard<_> =
thread_handle.lock().unwrap();
lock.count += 1
b
}
}
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Practical examples
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CLI programs

+ Shippable without runtime

+ Memory-conserving with fast startup time
 Fast and convenient parsers

« Free choice of concurrency patterns

« Ownership makes external resource management easy
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CLI: Code Example

use structopt::StructOpt;

#[derive(StructOpt)]

struct Cli {
/// The pattern to look for
pattern: String,
/// The path to the file to read
#lstructopt(parse(from_os_str))]
path: std::path::PathBuf,

}

fn main() -> Result<(), std::io::Error> {
let args = Cli::from_args();
let content = std::fs::read_to_string(&args.path)?;

for line in content.lines() {
if line.contains(&args.pattern) {
println!("{}", line);
}
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CLI: Serialization/Deserialization

use serde::{Serialize, Deserialize};
#[derive(Serialize, Deserialize, Debug)]
struct Point { x: i32, y: i32 }

fn main() {
let point = Point { x: 1, y: 2 };

let serialized = serde_json::to_string(&point).unwrap();
// Prints serialized = {"x":1,"y":2}
println!("serialized = {}", serialized);

let deserialized: Result<Point, _> = serde_json::from_str(&serialized);
// Prints deserialized = Ok(Point { x: 1, y: 2 })
println!("deserialized = {:?}", deserialized);

Type-informed serialization and deserialization, generated at compile-time!
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CLI: Serialization/Deserialization

#[derive(Serialize, Deserialize, Debug)]
#[serde(rename(serialize = "point"))]
struct Point {

#[serde(default)]

x: 132,

#[serde(default)]

y: i32,
}

Opt-In customization, including custom deserialization code.
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« No runtime overhead

 Great cross-compiling support
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Embedded Linux: Fields of use

» |oT Gateways
* Home routers
* Industry control systems

« Cars?
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Embedded Linux: Cross-Compiling

$ rustup target install aarch64-unknown-linux-musl
$ cargo build --target aarch64-unknown-linux-musl

As long as a target platform linker and libc is available.
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Bare-Metal embedded

Rust stabilized bare metal embedded support in 2018
- Stabilisation of all low-level details: replacable error handlers etc.

Great support for safe patterns on embedded devices
Relies on existing tooling
Should be considered young, but solid
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Example: Minimal Embedded Rust

//' Minimal “cortex-m-rt’ based program

#![deny(unsafe_code)]
#![deny(warnings)]
#![no_main]
#![no_std]

extern crate cortex_m_rt as rt;
extern crate panic_halt;

use rt::entry;

// the program entry point
#lentry]
fn main() -> ! {

loop {}

}
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Example: Memory mapping

mod syst {

/17
pub
/17
pub
/17
pub
/17
pub

}

}

#lrepr(C)]
pub struct RegisterBlock {

Control and Status
csr: RwW<u32>,
Reload Value

rvr: RW<u32>,
Current Value

cvr: RW<u32>,
Calibration Value
calib: RO<u32>,

fn place_syst() -> #const syst::RegisterBlock {
OXEOOO_EO010 as *const _
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Using Rust semantics

+ Rust on Embedded uses Ownership to handle device access
« Uses metaprogramming facilities to provide convenience

 Resulting code is board-specific
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Bare-Metal embedded: Options

« Directly use a board package
+ see https://github.com/rust-embedded for supported boards

+ Use RTFM: https://github.com/japaric/cortex-m-rtfm
« Use a full embedded operating system: https://www.tockos.org/
* It's possible to use Rust on top of C-based embedded OSes like RIOT
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Missing

Flashing and debugging with Rust or fully Rust-integrated targets. This is not a
language problem!
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Shared library use

+ Rust can generate static an dynamic libraries
« Punctual speedup of larger programs

+ Code sharing between different platforms
 Classic C usecase, reuses infrastructure

« Often used on mobile for shared libraries between Android an i0OS
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Shared library use: Example

#[derive(Debug)]
#[repr(C)]
pub struct Point {
x: 132,
y: i32
}

#[no_mangle]

pub extern "C" fn new_point(x: 132, y: i32) -> *mut Point {
let p = Box::new(Point { x: x, y: vy });
Box::into_raw(p)

}

#[no_mangle]
pub extern "C" fn destroy_point(p: *mut Point) {
unsafe { Box::from_raw(p) };

}

#[no_manglel]
pub extern "C" fn inspect_point(p: &mut Point) {
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Shared library use: Example

require 'ffi'

class Point < FFI::Struct
layout :int32, :int32
end

module LibPoint
extend FFI::Library
ffi_lib './libpoint.so'
attach_function :new_point, [ :int32, :int32 ], :pointer
attach_function :destroy_point, [ :pointer ], :void
attach_function :inspect_point, [ :pointer ], :void

end

ptr = LibPoint.new_point(1, 1)

point = Point.new ptr
LibPoint.inspect_point point.pointer
LibPoint.destroy_point point.pointer
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Shared library us
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Generators

« Rust program -> C/C++ Header

« C/C++ program -> Rust bindings

- Specialized tooks for Python/Ruby/Node
* Rust program -> WASM
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WebAssembly - WASM

« A machine independent binary format that can be run in a sandbox
« Almost as efficient as native code

« Rust is the prime langage for it
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WebAssembly - WASM: Example

#[wasm_bindgen]
extern {
fn alert(s: &str);

}

#[wasm_bindgen]
pub fn greet() {
alert("Hello, wasm-game-of-life!");

}
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WebAssembly - WASM: Example

« This is compiled through the standard cross-compilation toolchain
+ Additional post-processing to generate a JS layer for direct access
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WebAssembly - WASM: Example (JS Side)

import * as wasm from './wasm_hello_world';

export function greet() {
return wasm.greet();

}
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Notes on WebAssembly

« WebAssembly is currently a minimum viable product
+ A lot of things are down the road
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WebAssembly - WASM: Users

+ Cloudflare Workers: https://workers.cloudflare.com/
+ Deployed in all major browsers
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Network programming

There’s an extensive community around network programming.

- A zero-allocation userlevel TCP stack: https://github.com/m-labs/smoltcp
« SOzu, a Rust reverse proxy: https://github.com/sozu-proxy/sozu

« LinkerD, a service mesh for microservices: https://linkerd.io/
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Other usecases

« Gaming
« Embark Studios, Amethyst Game engine
« Infrastructure Software

« Amazon Firecracker
« Chef Habitat
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Missing: Safety Critical

« Formal proofing of the base language
« Certification of the compiler next?

 Sealed Rust: an attempt to bring certification of the Rust compiler on track

https://ferrous-systems.com/blog/sealed-rust-the-pitch/
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* Performance
* Reliability
+ Productivity
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Performance

« Alanguage as fast as C/C++
+ With safety while doing the fast thing
« Abstractions with no overhead
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Reliability

* Rust allows expression of complex abstract concepts...
+ .. on a close-to-the metal basis ...

* ... with type-level support for resource management.
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Productivity

 Great tooling
- Great documentation: https://rust-lang.org/learning

 extensive stdlib docs
« 9 books: language, embedded, cli tooling, internals...

« A language well feasible for performance refactoring
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Programming problems to solve

« Memory safety - through the type system

+ Resource consumption - by working with values and references
+ Resource handling - through Ownership

« Concurrency and parallelism - through the type system

« Dealing with external data - through type informed frameworks
* Resilience - making illegal state irrepresentable

* Integration into existing code - through C integration
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Ergonomics approach

General reminder that if you encounter a rustc diagnostic error that
confuses you for more than a minute, it is a bug. File tickets, we take
them seriously. We want rustc to be your first tutor.

- Estaban Kuber, responsible for diagnostics
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Does that work?

« We're seeing Rust used in many ways
+ Roughly 33% influx from each

 Functional languages
« Dynamic languages
+ Systems languages
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The cost of switching languages

We always consider switching language a high cost, while bringing another tool to
the belt is cheap.
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Conclusion

Rust is a language with well-chosen compile-time guarantees and simple runtime
semantics that allows you to use it in any area of your product.
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Thank you!

« https://twitter.com/argorak

* https://github.com/skade

« https://speakerdeck.com/skade

« florian.gilcher@ferrous-systems.com
« https://ferrous-systems.com

« https://rust-experts.com
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