

The Grand Challenge and Promise of Quantum Computing GOTO Amsterdam 2019 17-20 June 2019 Lieven Vandersypen

The physics of computation

2500 BC abacus

Can we do better?

Far-reaching potential applications

More on http://math.nist.gov/quantum/zoo/

"The quantum computer may change our everyday lives in this century in the same radical way as the classical computer did in the last century." (Nobel citation 2012)

Controlling individual quanta

Serge Haroche (ENS Paris)

David Wineland (NIST)

Physics Nobel Prize 2012

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

000 & 001 & 010 & 011 & 100 & 101 & 110 & 111

0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1110 & 1111

50 qubits (2⁵⁰ *complex* amplitudes) exceed memory of largest supercomputer

How quantum computers compute Example quantum circuit

The Grand Challenge: keeping qubits alive ... in a scalable system

Why I became optimistic

Advance 1: Qubits can be built on a chip! (Delft examples)

Semiconductor quantum dots

Semiconductor-superconductor hybrids

Impurities in diamond or silicon

Superconducting circuits

Advance 2: Extending quantum coherence Example: Spin qubits in semiconductor quantum dots

GaAs
Si
 ^{28}Si

Image: Constraint of the second state of the second

 $T_2^{DD} < 0.2 ms$

 $T_2^{DD} > 0.5 \text{ ms}$

 $T_2^{DD} \sim 28 \text{ ms}$

Petta et al, Science 2005

Kawakami, Scarlino, et al, Nature Nano 2014 Veldhorst, et al, Nature Nano 2014

Quantum state lifetimes boosted by four orders of magnitude

Advance 3: Quantum error correction

Use redundancy to remove errors faster than they occur

$$\oint + \oint = \oint \oint \oint + \oint \oint \oint$$

Requires: error probability per step below 1% (previously below 0.01%) large redundancy (100x to 10,000x)

Can preserve quantum states for as long as is needed!

Intermezzo – making things physical

All-electrical semiconductor quantum dots

Artificial atoms and molecules

Discrete # charges, quantized orbitals

Electrical control and detection

- Tunable # of electrons
- Tunable tunnel barriers
- Electrical contacts

Two-qubit operation

Electrical control of the coupling between neighbouring spins

Evolution of spin 2 conditional on spin 1

Read-out Spin-selective tunneling + charge detection

Grover's algorithm in silicon

T. Watson et al, Nature 2018

What stops us from having a quantum computer today?

Challenge 1: Qubits have personalities

Qubit is highly sensitive to patterning variations and microscopic defects

Way forward 1: Use industry cleanrooms

Tailor-made devices and circuits. Leverage known processes

QuTech-Intel collaboration

10 years, 50 M\$

Silicon spin qubits Transmon qubits

Architecture, Cryo-CMOS, interconnects

Transistor

Quantum dot array

Challenge 2: Scalable wiring & control

Today: bulky, expensive equipment

Way forward 2 : Integrated control architecture

E. Charbon et al., "Cryo-CMOS for Quantum Computing", IEDM 2016.

X. Fu et al, A microarchitecture for a superconducting quantum processor, IEEE Micro 2018

Challenge 3: What is it good for"?

Lots of speculation, high expectations Little shown.

Quantum Computing Use Cases

Gartner

gartner.com/SmarterWithGartner

Source: Adapted from Pete Shadbolt and Jeremy O'Brien © 2017 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of Gartner, Inc. or its affiliates. PR_338248

Way forward 3 – Cloud based platforms

http://quantum-inspire.com - Launched Sept. 4, 2018. Access to perfect (simulated) qubits. Real qubits coming. See also IBM Q Experience

n Inspire	Knowledge base	About	Contact
1 version 1.0			
2			
3 # This example is explained in www.quantum-ins	pire.com/kbase/hello-	quantum	-world, @ make
4 # Number of qubits for this backend is limited	to 5 Qubits		
5 qubits 2			
6			
7 {prep_z q[0] prep_z q[1]}			
8 9 # Create a superpensition state for subit 0			
10 H d[0]			
11			
12 # Entangle both qubits using a CNOT gate			5 8
13 CNOT q[0], q[1]			
_			
q[0] – <mark>0</mark>) – H – •			
q[1] – <mark>0</mark>) — — — — — — — — — — — — — — — — — — —			

Systems approach needed

QuTech partnership @ Delft

Quantum technology will not be built by physicists alone

Currently at ~ 200 fte, rapidly growing to 350 fte

When will there be a quantum computer?

Projecting quantum progress

Can we accelerate hardware development?

Can we accelerate software development?

The quantum computer – Coming to stores near you (soon?)

