9

GOTO Copenhagen 2019

Conference Nov. 18 - 20

OtlO;

copenhﬂgen

Building a blockchain in Erlang

UIf Wiger, Aeternity

GOTO Copenhagen 2019

Conference Nov. 18 - 20

OtlO;

copenhagen

9

Click ‘Rate Session’
to rate session e
and ask questions.

Y Follow us @gotocph

Ut Wiger

* 1989-95 Command & Control, Disaster Response, Alaska, USA
* Erlang since 1992

https://github.com/uwiger

* 1996-2008 Telecoms, Ericsson * Gproc (registry)
_ * Jobs (load regulation)
e 2008-11 CTO Erlang Solutions - Exometer (metrics)

* Locks (deadlock detection)

e 2011-present Entrepreneur, freelance consultant « Unsplit (netsplit resolver)

* 2017-present Aeternity Blockchain Core Team OTP Contribs

 XMErl &
e Application start phases

* (Also: professional opera singer) | pnesiamajority e

plugins

https://github.com/uwiger

Show of Hands

How many of you have programmed in Erlang?

Show of Hands

How many of you are familiar with blockchains?

Erlang Primer

-module(pmap).
e Functional (mostly) ~ ~=xPortiif/zl).
. : f(F, vals) —
Dynamlca”y typed Ps = [{V, spawn_monitor(fun() — exit({ok,F(V)}) end)}

.) || V <— Vals],
Garbage-collected [{v, collect(P)} || {V, P} < Psl.

* Concurrent collect({P, Ref}) —

receive
* Fault-tolerant {'DOWN', Ref, process, P, Reason} —>
* Pesky punctuation "0k, Res} = Reason,
end.)
Eshell V9.1 (abort with ~G)
[%>kc(pma?).
. . ok, pma
¢ Oplnlonated 2> p:ap?f(fun(x) —> X*2 end, lists:seq(1,5)).

[{1,2},{2,4},{3,6},{4,8},{5,10}]
[3>

Blockchain Primer

* World's slowest append-only DB tech
* No-trust
* Peer-to-peer

* Heavy reliance on crypto proofs

Transaction:

{ "type": "spend",
"amount": 2,

"from": "ak_p5mwx...KrRx",
"to": "ak_2J29W...KNZn" }

¢

Serialize, sign, enter pool

¢

Create block of transactions

¢

Solve crypto puzzle

¢

If lucky, append to chain,
collect reward

¢

Gossip block to peers

The Aternity Blockchain

 Standard Proof-of-Work model (Cuckoo Cycle)

’ B | . B N G Key Block 2
Itcoln consensus - W g =y
Q | Q : Q prev: pre.\/BlockHash
& (] o
~0 Y [}

Blocks confirmed by signature of the miner

Block confirmed by Pow
cointains PubKey

* New Smart Contract Language (Sophia)

* Interesting use cases as first-class objects
e State Channels
* Oracles (ports to the outside world)
* Naming System
* Generalized Accounts (pluggable authentication methods)

https://medium.com/aeternity-crypto-foundation/aeternity-bitcoin-ng-the-way-it-was-meant-to-be-df7bb1d65a4b

https://medium.com/aeternity-crypto-foundation/aeternity-bitcoin-ng-the-way-it-was-meant-to-be-df7bb1d65a4b

Performance aspects of blockchains

* Few parts are performance critical (today)
* Mainly Proof of Work, hashing, signatures
* Treat as an external service or BIFs (potentially specific hardware)

* Lots of networking

* Moving target
 Algorithms/features still evolving

How Does Erlang Help?

* Loosely coupled components
» Simplifies parallel development
» Simplifies reuse
* Flexible evolution

: State
Oracles Naming Channels Governance

Transaction support Contracts / VM

Blockchain DB Sync/Gossip

How Does Erlang Help? (2)

* Concurrency Done Right
Protocol aspects isolated from program logic
Easy to change/evolve protocols

Networking scalability not a big concern
* (we're not using Distributed Erlang)

Complex state machine support (more later)

How Does Erlang Help? (3)

* Functional Programming
e Simplifies testing
* Code, once correct, tends to stay correct
* Reduces surprising side-effects
* Powerful for blockchain state management

* Erlang doesn't enforce purity
e Pragmatism + culture
* Ubiquitous design patterns, manifested as 'behaviors'

How Does Erlang Help? (4)

 Carrier-Class Product Mentality
 Stellar backward compatibility
* Rock-solid VM
* No "dependency hell"
* Basically 'attack-proof' networking support
e Community culture

Challenges?

* Few other blockchain projects use Erlang
* Fewer opportunities for direct reuse
* Then again, re-writing/porting aids understanding ;-)

* Doesn't run on iOS or Android
* Not necessarily much of a disadvantage
* ... Except regarding State Channels

Aternity Dependencies

* OTP components used * External components
* Mnesia (DBMS) * Cuckoo cycle (C++, own wrapper)
* ssl, inets, asnl (comms) e RocksDb (mnesia backend)
* runtime_tools (tracing) * Exometer (metrics)

* Fternity core apps * Cowboy (web server)

. , .
* Core svcs, mining, chain, txs, ... Jsx, yamerl, base58,

HTTP-, Websocket API, Gossip * Jesse (JSON-Schema validation)
Smart Contracts, AEVM * IDNA

Naming Service * enacl, sha3
Oracles * gproc, jobs, lager, poolboy, ...

Build and Test

* Rebar3 for build (works so-so)
 EUnit, Common Test for test automation
* Dialyzer type analysis

* Quviq QuickCheck models

* Python-based acceptance test suite

QuickCheck — Testing on steroids

prop_run() —> prop_run(fate).
prop_run(Backendd) —>
?SETUP(fun() —> init(Backend®), fun() —> ok end end,
° ContrO”ed ?FORALL(Backend, elements(backend_variants(Backendd)),
?FORALL(InitS, init_state(Backend),
random ?FORALL(Cmds, ?SUCHTHAT(Cmds, commands(?MODULE, InitS), length(Cmds) > 2),
begin
teSt case Chunks = command_chunks(Cmds),
. CompiledCmds = compile_commands(InitS, Chunks),
£;€3r163r23t|()r] ?WHENFAIL([eqc: format("~s\n", [Source]) || Source <- contracts_source(InitS, Chunks)],
begin
init_run(Backend),
HSR={_, _, Res} = run_commands(?MODULE, CompiledCmds),
aggregate(command_names(Cmds),
measure(chunk_len, [length(Chunk) || {_, Chunk} <- Chunks],
pretty_commands(?MODULE, CompiledCmds, HSR,
case Res of
ok —> true;

{exception, {'EXIT', {function_clause, [{aeso_icode_to_asm, dup, _, _} | _1}}} —
?IMPLIES(false, false);
~ —> false
end)))
end)
end)))).

https://github.com/Quviq/epoch-eqc

https://github.com/Quviq/epoch-eqc

Fast aeternity Transaction Engine (FATE)

* Virtual machine for the Sophia contract language
* Implemented in Erlang (!)

e 1st VM (AEVM) a version of the Ethereum VM
* Typical low-level byte-code VM

* FATE is a high-level byte-code VM

* 90% reduction in byte code size

But high-level languages are slooow!

* For complex problems, this is not always true

* Greens pun 's Tenth Rule Any sufficiently complicated C or Fortran program contains an ad-hoc,

informally-specified, bug-ridden, slow implementation of half of Common Lisp.

* AVM in Erlang will do poorly at low-level evaluation

e But lots of things are already there
* |solation
* Memory management + GC
* Efficient data structures

* If you're already using Erlang, it makes sense

https://en.wikipedia.org/wiki/Greenspun%27s tenth rule

https://en.wikipedia.org/wiki/Greenspun%2527s_tenth_rule

State channels in Erlang

* Purpose: Establish "off-chain" channels
for fast and cheap transactions
* On-chain activity only when opening and closing channel

* Funds locked into the channel can be transferred in co-signed transactions
"for free"

e "Trust but verify" off-chain,
Mutual close or dispute resolution on-chain

State Channels: Surprisingly complex

* No-trust means everything must be verified

* Be prepared for malicious counterpart

* On-chain dispute protocols

e Channel may be subverted on-chain

* Off-chain contracts may refer to objects on-chain
* Chain may 'fork' — essentially a roll-back

* Normal comms error scenarios

Onen i-Estel Edain. U-chebin Estel anim

* Design decision: SC daemon with a simplified WebSocket API

* Complicates the state machine

* Hopefully simplifies client App design Transition states!

{Transfer, From, To, Amt}

{sign, NewStateTx}

—————
-~
’

~~
~
SS

signed, SignedTx} ~ “~._ Awaiting_signature .
{update, SignedTx}
________________________________ / 7/ {sign, SignedTx}
______A.__/_\{?Itlng_u pdate_i_c_'_f __________________ Awaiting_signature | . ’ {signed, CoSignedTx}

{update_ack, CoSignedTx}
{info, CoSignedTx}

Avoid Death by Accidental Complexity

e https://www.infog.com/presentations/Death-by-Accidental-Complexity
(2010 talk, based on Structured Network Programming EUC 2005)

Telecom “Half-Call” model

* Must avoid having to handle all possible Control/Charging, ...

orderings of incoming messages
* Otherwise, complexity explosion in transition I U I U
states L @ — —
i i

Resources

A = originating side
B = terminating side

https://www.infoq.com/presentations/Death-by-Accidental-Complexity

Erlang pays off—FSM programming in practice

* As many processes as logically
WS handler convenient WS handler

(cowboy callback) (cowboy callback)
e Separate concerns
* Linked together for failure handling

Chain watcher '
SC fsm SC fm Chain watcher

en_server)
(8 (gen_statem) (gen_statem) (gen_server)

noise session noise session
(gen_server) (gen_server)

Transition state handlingin gen statem

awaiting_signature(cast, {?SIGNED, withdraw_tx, SignedTx} = Msg,
#data{op = #op_sign{ tag = withdraw_tx

, data = OpDatad }} ’:_
#op_data{updates = Updates} = OpData0,

, , Pattern-match asserting
maybe_check_auth(SignedTx, OpData®, not_withdraw_tx, me,
fun() — that we got the event
OpData = OpData@#op_data{signed_tx = SignedTx}, we were waiting for
next_state(wdraw_half_signed,
send_withdraw_created_msg(SignedTx, Updates,
log(rcv, ?SIGNED, Msg,
D#data{op = #op_ack{ tag = withdraw_tx
, data = OpData}})))
end, D);

Valid events, but should handle_common_event_(_Type, _Msg, _St, P, D) when P == postpone —>
> postpone(D);
not be handled here handle_common_event_(Type, Msg, St, discard, D) —>
lager:warning("Discarding ~p in '~p' state: ~p", [Type, St, Msgl),
Urﬂ01ovvn<3rstray > keep_state(log(drop, msg_type(Msg), Msg, D));
. handle_common_event_(Type, Msg, St, Err, D) when Err==error;
events, safe to discard Erreerror all —>
lager:debug("Wrong ~p in ~p: ~p", [Type, St, Msql),

Protocol violations $ %% should send an error msg

close(protocol_error, D).

In summary

* Blockchain tech is a moving target

* Loosely coupled components

e Correctness is key

* A few performance-critical components written in C

* Erlang well suited to blockchain development
* Brilliant for state channel programming!

GOTO Copenhagen 2019

Conference Nov. 18 - 20

OtlO;

copenhagen

9

oY

Remember to

rate this session
Thank Yo 4 Lm

Y Follow us @gotocph

GOTO Copenhagen 2019

Conference Nov. 18 - 20

O1l0,;

copenhﬁgen

9

Did you remember
to rate the previous
Session 7

.“ ‘1
4 | |
Y\ \" |,-
;- J
' 4 I
S " y \ |
T e y | _:j A
—— — (/ - |
- i N :‘ A P y
| 4 >

— A T N\
- A\
s N0\
i NI

— N Follow us @gotocph

