
Building a blockchain in Erlang
Ulf Wiger, Aeternity





Ulf Wiger

• 1989-95 Command & Control, Disaster Response, Alaska, USA
• Erlang since 1992
• 1996-2008 Telecoms, Ericsson
• 2008-11 CTO Erlang Solutions
• 2011-present Entrepreneur, freelance consultant
• 2017-present Aeternity Blockchain Core Team

• (Also: professional opera singer)

https://github.com/uwiger
• Gproc (registry)
• Jobs (load regulation)
• Exometer (metrics)
• Locks (deadlock detection)
• Unsplit (netsplit resolver)

OTP Contribs
• XMErl😬
• Application start phases
• Mnesia majority flag
• Mnesia backend & index 

plugins

https://github.com/uwiger


Show of Hands

How many of you have programmed in Erlang?



Show of Hands

How many of you are familiar with blockchains?



Erlang Primer

• Functional (mostly)
• Dynamically typed
• Garbage-collected
• Concurrent
• Fault-tolerant
• Pesky punctuation

• Opinionated



Blockchain Primer

• World's slowest append-only DB tech
• No-trust
• Peer-to-peer
• Heavy reliance on crypto proofs

Transaction:
{ "type": "spend",

"amount": 2,
"from": "ak_p5mwx...KrRx",
"to": "ak_2J29W...KNZn" }

Serialize, sign, enter pool

Create block of transactions

Solve crypto puzzle

If lucky, append to chain, 
collect reward

Gossip block to peers



The Æternity Blockchain

• Standard Proof-of-Work model (Cuckoo Cycle)
• Bitcoin-NG consensus

• New Smart Contract Language (Sophia)
• Interesting use cases as first-class objects
• State Channels
• Oracles (ports to the outside world)
• Naming System
• Generalized Accounts (pluggable authentication methods)

https://medium.com/aeternity-crypto-foundation/aeternity-bitcoin-ng-the-way-it-was-meant-to-be-df7bb1d65a4b

https://medium.com/aeternity-crypto-foundation/aeternity-bitcoin-ng-the-way-it-was-meant-to-be-df7bb1d65a4b


Performance aspects of blockchains

• Few parts are performance critical (today)
• Mainly Proof of Work, hashing, signatures
• Treat as an external service or BIFs (potentially specific hardware)

• Lots of networking
• Moving target
• Algorithms/features still evolving



How Does Erlang Help?

• Loosely coupled components
• Simplifies parallel development
• Simplifies reuse
• Flexible evolution

Blockchain DB Crypto Sync/Gossip

Transaction support Contracts / VM

Oracles Naming State 
Channels Governance



How Does Erlang Help? (2)

• Concurrency Done Right
• Protocol aspects isolated from program logic
• Easy to change/evolve protocols
• Networking scalability not a big concern

• (we're not using Distributed Erlang)
• Complex state machine support (more later)



How Does Erlang Help? (3)

• Functional Programming
• Simplifies testing
• Code, once correct, tends to stay correct
• Reduces surprising side-effects
• Powerful for blockchain state management

• Erlang doesn't enforce purity
• Pragmatism + culture
• Ubiquitous design patterns, manifested as 'behaviors'



How Does Erlang Help? (4)

• Carrier-Class Product Mentality
• Stellar backward compatibility
• Rock-solid VM
• No "dependency hell"
• Basically 'attack-proof' networking support
• Community culture



Challenges?

• Few other blockchain projects use Erlang
• Fewer opportunities for direct reuse
• Then again, re-writing/porting aids understanding ;-)

• Doesn't run on iOS or Android
• Not necessarily much of a disadvantage
• ... Except regarding State Channels



Æternity Dependencies

• OTP components used
• Mnesia (DBMS)
• ssl, inets, asn1 (comms)
• runtime_tools (tracing)

• Æternity core apps
• Core svcs, mining, chain, txs, ...
• HTTP-, Websocket API, Gossip
• Smart Contracts, AEVM
• Naming Service
• Oracles

• External components
• Cuckoo cycle (C++, own wrapper)
• RocksDb (mnesia backend)
• Exometer (metrics)
• Cowboy (web server)
• Jsx, yamerl, base58,
• Jesse (JSON-Schema validation)
• IDNA
• enacl, sha3
• gproc, jobs, lager, poolboy, ...



Build and Test

• Rebar3 for build (works so-so)
• EUnit, Common Test for test automation
• Dialyzer type analysis
• Quviq QuickCheck models

• Python-based acceptance test suite



QuickCheck – Testing on steroids

• Controlled
random
test case
generation

https://github.com/Quviq/epoch-eqc

https://github.com/Quviq/epoch-eqc


Fast æternity Transaction Engine (FATE)

• Virtual machine for the Sophia contract language
• Implemented in Erlang (!)
• 1st VM (AEVM) a version of the Ethereum VM
• Typical low-level byte-code VM

• FATE is a high-level byte-code VM
• 90% reduction in byte code size



But high-level languages are slooow!

• For complex problems, this is not always true
• Greenspun's Tenth Rule

• A VM in Erlang will do poorly at low-level evaluation
• But lots of things are already there
• Isolation
• Memory management + GC
• Efficient data structures

• If you're already using Erlang, it makes sense

https://en.wikipedia.org/wiki/Greenspun%27s_tenth_rule

https://en.wikipedia.org/wiki/Greenspun%2527s_tenth_rule


State channels in Erlang

• Purpose: Establish "off-chain" channels
for fast and cheap transactions
• On-chain activity only when opening and closing channel
• Funds locked into the channel can be transferred in co-signed transactions 

"for free"
• "Trust but verify" off-chain,

Mutual close or dispute resolution on-chain



State Channels: Surprisingly complex

• No-trust means everything must be verified
• Be prepared for malicious counterpart
• On-chain dispute protocols
• Channel may be subverted on-chain
• Off-chain contracts may refer to objects on-chain
• Chain may 'fork' – essentially a roll-back
• Normal comms error scenarios



Ónen i-Estel Edain. Ú-chebin Estel anim

• Design decision: SC daemon with a simplified WebSocket API
• Complicates the state machine
• Hopefully simplifies client App design

{Transfer, From, To, Amt}

{sign, NewStateTx}

{signed, SignedTx}

{update, SignedTx}
{sign, SignedTx}

{signed, CoSignedTx}

{update_ack, CoSignedTx}
{info, CoSignedTx}

Awaiting_signature

Awaiting_update_ack Awaiting_signature

Transition states!



Avoid Death by Accidental Complexity

• https://www.infoq.com/presentations/Death-by-Accidental-Complexity
(2010 talk, based on Structured Network Programming EUC 2005)

• Must avoid having to handle all possible 
orderings of incoming messages
• Otherwise, complexity explosion in transition 

states

https://www.infoq.com/presentations/Death-by-Accidental-Complexity


Erlang pays off—FSM programming in practice
• As many processes as logically 

convenient
• Separate concerns
• Linked together for failure handling

noise session
(gen_server)

noise session
(gen_server)

SC fsm
(gen_statem)

SC fsm
(gen_statem)

WS handler
(cowboy callback)

WS handler
(cowboy callback)

Chain watcher
(gen_server)

Chain watcher
(gen_server)



Transition state handling in gen_statem

Valid events, but should 
not be handled here

Pattern-match asserting
that we got the event 
we were waiting for

Protocol violations

Unknown or stray 
events, safe to discard



In summary

• Blockchain tech is a moving target
• Loosely coupled components
• Correctness is key
• A few performance-critical components written in C
• Erlang well suited to blockchain development
• Brilliant for state channel programming!






