
Cloud Native Development Without the Toil:
Key Practices and Tooling

Daniel Bryant

@danielbryantuk

tl;dr

2

• Continuous delivery requires safety and speed throughout the engineering workflow

• Bringing old mental models and tools can increase toil when building, testing, and
running cloud native services

• Artifact syncing, dev environment bridging, and GitOps increase both safety and speed

@danielbryantuk

3

@danielbryantuk4

The quest for happy usersWhy we’re all here: Happy users

https://dilbert.com/strip/2014-02-25

@danielbryantuk

Continuous delivery of value

5

“Continuous delivery is achieved when stability and speed
can satisfy business demand.

Discontinuous delivery occurs when stability and speed
are insufficient.”

- Steve Smith (@SteveSmith_Tech)

https://twitter.com/SteveSmith_Tech

@danielbryantuk

Continuous delivery of value

6

“Continuous delivery is achieved when stability and speed
can satisfy business demand.

Discontinuous delivery occurs when stability and speed
are insufficient.”

- Steve Smith (@SteveSmith_Tech)

https://twitter.com/SteveSmith_Tech

@danielbryantuk

Continuous delivery of value

7

“Continuous delivery is achieved when stability and speed
can satisfy [your] business demand.

Discontinuous delivery occurs when stability and speed
are insufficient.”

- Steve Smith (@SteveSmith_Tech)

https://twitter.com/SteveSmith_Tech

8

Two modern software trends
for speed and safety

@danielbryantuk

Trend #1: Microservices

9

• Modularisation
• Aka “microservices”

• Independently:
• Build
• Release
• Scale
• Operate

• Strive for
• High cohesion
• Loose coupling

@danielbryantuk

Trend #2: Kubernetes

10

• Automated orchestration of container-based services

• Declarative config (with reconciliation loops)

• Common API/platform to support and extend

• But… a non-trivial set of abstractions/components for developers

• And it’s not a PaaS

@danielbryantuk

tl;dr

11

With cloud native, the focus is often on speed

The Kubernetes Migration Journey(s)

12

Exploration
Organizational buy-in Cloud-native organization

(Loosely coupled, highly aligned)

We’re not actually moving faster

Let’s release our microservices as a monolith

Centres of excellence

No coordination results in disasters and blame

Investing in “paved road” platforms
And new dev workflows

Clinging to old mental models
and “the way it’s always been done”

13

Safety

The ability to quickly ship
changes to production,
without fear

Safety requires multiple strategies

14

Prevention

Mitigation

Detection

Response

Most common strategy (e.g., testing, QA, gated release)

Critical strategies for cloud-native organizations when
the application is a “complex adaptive system”}

}

Safety Strategies in the Cloud

15

Prevention

Mitigation

Detection

Response

• Testing: integration tests, user acceptance tests, …
• High-fidelity replica environments for dev & test

• Engineering for resilience
• Progressive delivery: canary release, blue/green rollouts, …

• Observability
• Chaos engineering

• Instant rollback & traceability
• Runbooks, fast dev / test loops
• Blameless postmortems
• Game days

Safety needs to
be part of your
workflow.

16

Develop
Test

Deploy/
Release

Run

Progressive Delivery
Rollback

Observability
Chaos Engineering
Runbooks

Fast dev loop
Fast feedback Realistic test

environments

17

Develop
Test

Deploy/
Release

Run

Progressive Delivery
Rollback

Observability
Chaos Engineering
Runbooks

Fast dev loop
Fast feedback Realistic test

environments

Developer
Self-Service

@danielbryantuk18

Patterns, practices, and tooling

@danielbryantuk

Pattern: Artifact Syncing

19

• Pain points:

• Can’t run all required dependent services locally

• Sick of code, build image, push to remote registry slow dev loop

• Integration tests rely on mocks (with implicit assumptions)

• Solution

• Deploy all services to remote environment and sync local changes (combine with buildpacks)

• Often combined with development environment bridging

• Example tool

• Skaffold (ksync, Tilt, Garden)

http://www.skaffold.dev

@danielbryantuk

Skaffold: “Source to K8s” CLI Tool
$ skaffold dev

20

Listing files to watch...
 - skaffold-example
Generating tags...
 - skaffold-example -> skaffold-example:v1.1.0-113-g4649f2c16
Checking cache...
 - skaffold-example: Not found. Building
Found [docker-desktop] context, using local docker daemon.
Building [skaffold-example]...
Sending build context to Docker daemon 3.072kB
Step 1/6 : FROM golang:1.12.9-alpine3.10 as builder
 ---> e0d646523991
Step 2/6 : COPY main.go .
 ---> Using cache
 ---> e4788ffa88e7
Step 3/6 : RUN go build -o /app main.go
 ---> Using cache
 ---> 686396d9e9cc
Step 4/6 : FROM alpine:3.10
 ---> 965ea09ff2eb
Step 5/6 : CMD ["./app"]
 ---> Using cache
 ---> be0603b9d79e
Step 6/6 : COPY --from=builder /app .
 ---> Using cache
 ---> c827aa5a4b12
Successfully built c827aa5a4b12
Successfully tagged skaffold-example:v1.1.0-113-g4649f2c16
Tags used in deployment:
 - skaffold-example -> skaffold-example:c827aa5a4b12e707163842b803d666eda11b8ec20c7a480198960cfdcb251042
 local images can't be referenced by digest. They are tagged and referenced by a unique ID instead
Starting deploy...
 - pod/getting-started created
Watching for changes...
[getting-started] Hello world!
[getting-started] Hello world!
[getting-started] Hello world!

@danielbryantuk

Skaffold: “Source to K8s” CLI Tool

21

@danielbryantuk

Skaffold: “Source to K8s” CLI tool

22

skaffold dev & skaffold debug
• Detects changes in your source code and handles the pipeline to build,

push

skaffold build and skaffold deploy
• Execute as part of your CI/CD pipeline, or skaffold run end-to-end

skaffold render
• Build your images and render templated Kubernetes manifests for use

in GitOps workflows

@danielbryantuk

Pattern: Dev Environment Bridging/Extension

23

• Pain points:

• Can’t run all required dependent services locally

• Integration tests rely on mocks (with implicit assumptions)

• Need “hot reload” coupled to remote services/resources

• Solution

• Deploy all services to remote environment and proxy/re-route traffic to/from
a local running copy of a service (or subset of services)

• Example tool

• Telepresence (kubefwd, Okteto)

https://www.getambassador.io/products/telepresence/

@danielbryantuk

Telepresence: Local-to-Remote bridge
$ telepresence intercept dataprocessingnodeservice --port 3000

24

@danielbryantuk

Telepresence: Local-to-Remote bridge

25

www.youtube.com/watch?v=W_a3aErN3NU

http://www.youtube.com/watch?v=W_a3aErN3NU

@danielbryantuk

Telepresence: Local-to-Remote bridge

26

telepresence connect
• Open a tunnel to the remote cluster; exposes “in-cluster” services/network/DNS

telepresence intercept my-service —port 3000
• Re-routes (intercepts) traffic to my-service in the remote cluster to my local machine

telepresence login & telepresence intercept
• Create preview URL to isolate and share results of the intercept

@danielbryantuk

Telepresence: Local-to-Remote bridge
$ telepresence intercept dataprocessingnodeservice --port 3000

27

Using deployment dataprocessingnodeservice
intercepted
 State : ACTIVE
 Destination : 127.0.0.1:3000
 Intercepting: HTTP requests that match all of:
 header("x-telepresence-intercept-id") ~= regexp ("76a1e848-1829-74x-1138-e3294c1e9119:dataprocessingnodeservice")
 Preview URL : https://[random-subdomain].preview.edgestack.me

www.youtube.com/watch?v=W_a3aErN3NU

@danielbryantuk

Pattern: GitOps

28

• Pain points:

• No repeatable, auditable, & understandable deployment of infra and apps

• Slow hand-offs and manual deploys

• Solution

• Use version control (git) as single source of truth

• Declarative config; reconciled against target cluster

• Example tool

• Argo CD (Flux, JenkinsX, werf)

https://www.weave.works/blog/what-is-gitops-really

https://argoproj.github.io/argo-cd/

@danielbryantuk

Argo CD: GitOps for K8s

29

$ argocd app create guestbook --repo https://github.com/argoproj/argocd-example-apps.git /
--path guestbook --dest-server https://kubernetes.default.svc --dest-namespace default

@danielbryantuk

GitOps in a Nutshell

30

https://www.weave.works/blog/the-gitops-pipeline

https://www.weave.works/blog/the-gitops-pipeline

@danielbryantuk

Argo Rollouts: K8s Progressive Delivery Controller

31

@danielbryantuk

Putting it All Together: Safety and Speed

32

https://www.weave.works/blog/what-is-gitops-really

Development Production

Artifact syncing, Dev Env Bridging GitOps

Speed

Safety

@danielbryantuk33

What about the platform
and the people?

@danielbryantuk

Workflow: Full Cycle Development

34

• App teams have full responsibility (and authority) for
delivering a service, and ultimately, value to users

• Increase agility by accelerating the feedback loop

• https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249

https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249

app.getambassador.io

thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground

https://app.getambassador.io/
https://thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground/

@danielbryantuk

Conclusion

36

• Continuous delivery of value to users requires a focus on safety and
speed throughout the engineering workflow

• Bringing old mental models and tools can add toil to the process of
building, deploying, and operating cloud native services

• Adopt best practices first, such as artifact syncing, dev environment
bridging, and GitOps to increase both safety and speed

@danielbryantuk

• Learn more:

• www.getambassador.io/resources

• www.getambassador.io/use-case/local-kubernetes-development

• www.infoq.com/profile/Daniel-Bryant

• Find me in:

• Datawire OSS Slack: d6e.co/slack

• Twitter @danielbryantuk

Many thanks!

37

http://www.getambassador.io/resources
http://www.getambassador.io/use-case/local-kubernetes-development
https://www.infoq.com/profile/Daniel-Bryant/
http://d6e.co/slack
https://twitter.com/danielbryantuk

