
BEYOND FUNCTIONAL
PROGRAMMING:

THE VERSE PROGRAMMING
LANGUAGE

Lennart Augustsson
(and many others)

Epic Games

GOTO Copenhagen
October 2023

Epic Games
◼ Makes games, e.g., Fortnite
◼ Unreal Engine, a game engine

Epic Games
◼ Unreal Engine used for many, many games
◼

http://www.youtube.com/watch?v=WU0gvPcc3jQ&t=52

Epic Games
◼ Unreal Engine used for many, many games
◼

http://www.youtube.com/watch?v=WU0gvPcc3jQ&t=172

Verse: a language for the metaverse
Tim Sweeney’s vision of the metaverse
◼ Social interaction in a shared real-time 3D simulation
◼ An open economy with rules but no corporate overlord
◼ A creation platform open to all programmers, artists, and

designers, not a walled garden
◼ Much more than a collection of separately compiled,

statically-linked apps: everyone’s code and content must
interoperate dynamically, with live updates of running code

◼ Pervasive open standards. Not just Unreal, but any other
game/simulation engine, e.g., Unity.

Verse is open

Like the metaverse vision, Verse itself is open

◼ We will publish papers, specification for anyone to implement

◼ We will offer compiler, verifier, runtime under permissive
open-source license with no IP encumbrances.

Goal: engage in a rich dialogue with the community that will
make Verse better.

Do we really need a new language?
◼ Objectively: no. All languages are Turing-complete.
◼ But we think we can do better with a new language
◼ Scalable to running code, written by millions of programmers who do

not know each other, that supports billions of users
◼ Transactional from the get-go; the only plausible way to manage

concurrency across 1M+ programmers
◼ Strong interop guarantees over time: compile time guarantees that a

module subsumes the API of the previous version.

◼ And …
◼ Learnable as a first language (c.f. Javascript yes, C++ no)
◼ Extensible: mechanisms for the language to grow over time, without

breaking code.

Where are we?
◼ A version of Verse released in April 2023 with UEFN.
◼ UEFN allows anyone to add new "islands" to Fortnite.
◼ Thousands of new "islands"
◼ Thousands of programmers

◼ Revenue shared with island creators based on engement

A taste of Verse
❑ Verse 1: a familiar FP subset
❑ Verse 2: choice
❑ Verse 3: functional logic

View from 100,000 feet
◼ Verse is a functional logic language (like Curry or Mercury).
◼ Verse is a declarative language: a variable names a single

value, not a cell whose value changes over time.
◼ Verse is lenient but not strict:
◼ Like strict: "everything" gets evaluated in the end
◼ Like lazy: functions can be called before the argument has a value

◼ Verse has an unusual static type system: types are first-class
values.

◼ Verse has an effect system, rather than using monads.

A taste of Verse

◼ A subset of Verse is a fairly ordinary functional language

◼ Integers

◼ Tuples/arrays

3 3+7

(3,4)

fst(3,4)

array{3,4} array{3}

((92,2),3, 4)

Singleton
array

“array{..}” is
long-form

syntax

a[7] Indexing

Bindings

x:=3; x+x

x:=3; y:=x+1; x*y

y:=x+1; x:=3; x*y

Syntax: ":=” and “;”

Order does
not matter

Think recursive bindings.
NOT assignment

Functions and lambda

f(x:int):int := x+1; f(3)

f:=(x:int=>x+1); f(3)

Verse uses infix “=>” for lambda

Arguments on
the LHS…

..or use lambda

Conditionals and recursion

fac(x:int):int :=
 if (x=0) then 1 else n * fac(n-1)

Conditionals Recursion

Verse 2: choice

Choice

◼ In most languages, an expression denotes one value

◼ A Verse expression denotes a sequence of zero or more values

3 | 4

false?

3 One value

Two values

Zero values
Choice

operator

1..10 Ten values

A quirky notation
for “fail”

Binding and choices

◼ A bit like., e.g., Haskell list comprehension

◼ Key point: a variable is always bound to a single value,
not to a sequence of values. I.e.,
◼ We execute the (x+1) with x bound to 1, then with x bound to 7, then

with x bound to 2.
◼ Not with x bound to (1|7|2)

x:=(1|7|2); x+1 Denotes sequence of
three values: 2, 8, 3

[x+1 | x<-[1,7,2]]

Nested choices
◼ What sequence of values does this denote?

◼ Answer: (1,7), (1,8), (2,7), (2,8)
◼ Like Haskell list comprehension
◼ But more fundamentally built in
◼ Key point again: a variable is always bound to a single value,

not to a sequence of values

x:=(1|2); y:=(7|8); (x,y)

[(x,y) | x<-[1,2]; y<-[7,8]]

Nested choices

◼ You can also write
◼ This still produces the same sequence of pairs,

not a single pair containing two sequences!

◼ Same for all operations

x:=(1|2); y:=(7|8); (x,y)

((1|2), (7|8))

77 + (1|3) (77+1) | (77+3)means the same as

77 + false? false?means the same as

Nested choices and funky order

◼ What sequence of values does this denote?

◼ Answer: (7,7), (8,8), (2,7), (2,8)

◼ Order of results is still left-to-right

◼ But data dependencies can be “backwards”

◼ Haskell

x:=(y|2); y:=(7|8); (x,y)

[(x,y) | x<-[y,2]; y<-[7,8]] -- Rejected!

Conditionals

◼ No Booleans!

◼ Returns e1 if e succeeds
◼ “Succeeds” = returns one or more values

◼ Returns e2 if e fails
◼ “Fails” = returns zero values

◼ Like Icon (from a long time ago)

if (e) then e1 else e2

Comparisons

◼ (x<20)
◼ fails if x >= 20
◼ succeeds if x < 20, returning the left operand

◼ Example: (3 + (x<20))
◼ Succeeds if x=7, returning 10
◼ Fails if x=25

◼ Example: (0 < x < 20)
◼ Succeeds if x is between 0 and 20, returning 0
◼ Fails if x is out of range
◼ (<) is right-associative

if (x<20) then e1 else e2

if (0<x<20) then e1 else e2

if (0<x && x<20) then … else …c.f.

Conjunction and disjunction

◼ The tuple expression (x<20,y>0) fails
if either (x<20) or (y>0) fails

◼ Choice succeeds if either branch succeeds

if (x<20, y>0) then e1 else e2

if (x<20 | y>0) then e1 else e2

Equality

◼ (x=0)
◼ fails if x is not zero
◼ succeeds if x is zero, returning x

◼ “If x is 2 or 3 then…”

if (x=0) then e1 else e2

As we will see, “=” is a
super-important operator

if (x=(2|3)) then e1 else e2

if (x==2 || x==3) then … else…c.f.

From choice to tuples

◼ for turns a choice into a tuple/array

for{ 3 | 4 }

for{ false? }

for{ 3 } The singleton tuple, array(3)

The tuple (3,4)

The empty tuple ()

for{ 1..10 } The tuple (1,2,…, 10)

Order is important

◼ for turns a choice into a tuple/array

◼ That’s why we say that an expression denotes a sequence of
values, not a bag of values, and definitely not a set.

◼ So “|” is associative but not commutative

for{ 3 | 4 }

The tuple (4,3)for{ 4 | 3 }

The tuple (3,4)

From tuples to choice

◼ ? turns a tuple/array into a choice

◼ false := (), the empty tuple
so false? always fails.

(3,4)? The choice (3 | 4)

for{ e }? Same as e

for{ e? } Same as e

Generalising for

for (i:=1..3) do i*i ((1*1), (2*2), (3*3))=

for (e1) do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

(1,4,9)=

Generalising for for (e1) do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

for (i:=1..4, isEven(i)) do (i*i)

(4,16)

=

◼ Domain expression can fail

=
(2*2, 4*4)

Generalising for for (e1) do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

for (i:=1..4) do (i<3)

(1, 2, false?, false?)

=
◼ Range expression can fail

false?

=
(1<3, 2<3, 3<3, 4<3)

=

Generalising for for (e1) do e2

Iterate over the N (non-failing)
choices in the domain e1

Form the N-tuple from the
value(s) of range e2

(variables bound in e1 scope over e2)

for (i:=1..3) do (i|i+7) ((1|8), (2|9), (3|10))=

xs := for(1..5) do (0|1|2); ...xs... xs is successively bound to all
5-digit numbers in base 3

And we can use that
choice to iterate:

◼ Range expression can yield multiple values

(1,2,3) | (1,2,10) |
(1,9,3) | (1,9,10) |
..

=

 Indexing arrays as[i]

◼ Indexing an array/tuple, as[i], fails on bad indices

as:=(3,7,4) as[0] Denotes one value, 3

as[2] Denotes one value, 4

as[7] Fails: denotes zero values

for{i:=0..Length(as)-1; as[i]+1} Returns (4,8,5)

if (x:=as[i]) then x+1 else 0 Returns 0 if i is out of range

1..n is (1 | 2 | ... | n)

 Narrowing

◼ What values can i take? Clearly just 0,1,2!

◼ So expand as[i] to those three choices

◼ This is called “narrowing” in the functional logic literature

as:=(3,7,4);
for{i:int; as[i]+1}

as:=(3,7,4);
for{i:int; as[i] + 1}

as:=(3,7,4);
for{i:int; ((i=0; 3+1) |
 (i=1; 7+1) |
 (i=2; 4+1)) }

=

New: i:int brings i into scope
without giving it a value

Some functions

head(xs) := xs[0]
tail(xs) := for{i>0; xs[i:int]}
cons(x,xs) := for{x | xs[i:int]}
snoc(xs,x) := for{xs[i:int] | x}
append(xs,ys) := for{xs[i:int] | ys[j:int]}
map(f,xs) := for{f(xs[i:int])}
zip(xs,ys) := for{xs[i:int], ys[i]}

Fails on empty tuple

Function calls and failure

Verse tries to make it easy to see if an expression can fail

◼ x cannot fail (remember, a variable is bound to a single value)

◼ x>y can fail (if x <= y)

◼ Function application f(e) cannot fail. The verifier ensures
this, and rejects the program if it can’t prove it

◼ Function application f[e] can fail, if f’s body fails. Indexing is
not special in this sense.

Putting it together

fibs10 := for(i:=0..9) do (if (r:=fibs10[i-1]+fibs10[i-2])
 then r
 else 1)

Verse 3: functional logic

Separating “bring into scope” from “give
value”

x:=7; x+1>3; y=x*2

x:int; x=7; x+1>3; y=x*2

means the same as

Bring x into
scope.

I’m not telling
you what its
value is yet

By the way,
x must be 7
(or else fail) The very same

“=” as before

Separating “bring into scope” from “give
value”

x:=7; x+1>3; y=x*2

x:int; x=7; x+1>3; y=x*2

means the same as

 x=7; x+1>3; y=(x:int)*2

means the same as

Think:
• “:” brings the variable

into scope.
• Scope extends to the

left as well as right

 x+1>3; y=(x:=7)*2

Towards functional logic programming

◼ E.g.,Haskell

◼ Verse

let (y,z) = if (x=0) then (3,4)
 else (232, 913)

in y+z

y:int; z:int;
if (x=0) then { y=3; z=4 }
 else { y=232; z=913 };
y+z

Bring y,z into scope

Give them values

x:tuple(int,int);
x = (2,_);
x = (_,3);
x

Towards functional logic programming

◼ Partial values
x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

x’s first component is 2
y is a fresh unbound variable

x’s second component is 3
z is a fresh unbound variableOr

Towards functional logic programming

◼ You can even pass those in-scope-but-unbound variables to a
function

f(p:int,q:int):int :=
 if (x=0) then { p=3; q=4 }
 else { p=232; q=913 };
y:int; z:int;
f(y,z);
y+z

Pass y,z to f, which binds
each of them to a value

…and add up the
results

Towards functional logic programming

◼ y,z look very like logical variables in Prolog,
aka “unification variables”.

◼ And “=” looks very like unification.

f(p:int,q:int):int :=
 if (x=0) then { p=3; q=4 }
 else { p=232; q=913 };
y:int; z:int;
f(y,z);
y+z

Towards functional logic programming
◼ We can do the usual “run functions backwards” thing

swap(x:int, y:int) := (y,x)

w:tuple(int,int);
swap(w) = (3,4);
w

swap(3,4) Run swap “forward”: returns (4,3)

Run swap “backward”: Also returns (4,3)

Flexible and rigid variables
◼ What does this do?

◼ One plan (Curry): two different equality operators

◼ Verse plan:
◼ inside a conditional scrutinee, variables bound outside (e.g., x) are

“rigid” and can only be read, not unified
◼ outside, x is “flexible” and can be unified

x:int; y:int;
if (x=0) then y=1 else y=2;
x=7;
y

Sets the
value of y

Reads the
value of x

Sets the value
of x

Lenience
◼ Clearly Verse cannot be strict

◼ call-by-value
◼ with a defined evaluation order
because earlier bindings may refer to later ones;
and functions can take as-yet-unbound logical variables as arguments

◼ And it cannot be lazy, because all those “=“ unifications must
happen, to give values to variables.

◼ So Verse is lenient
◼ "Everything" is eventually evaluated
◼ But only when it is “ready”
◼ Like dataflow

x:int;
if (x=0) …;
f(x);
…

‘if’ is stuck until x
gets a value

Let’s hope f
gives x its value

“Residuation”

Making it all precise

Designing the aeroplane during take-off

◼ MaxVerse: the glorious vision.
A significant research project in its own right.

◼ ShipVerse: a conservative subset shipped in April 2023.

Core Verse

◼ MaxVerse is a big language

◼ To give it precise semantics, we use a small Core Verse
language:
◼ Desugar MaxVerse into CoreVerse
◼ Give precise semantics to CoreVerse
◼ CoreVerse might well be a good compiler intermediate language

◼ Analogy:
◼ MaxVerse = Haskell
◼ CoreVerse = Lambda calculus

MaxVerse code

CoreVerse code

Core Verse

◼ “=” is a language construct, not a primop (like gt)

◼ ⟨v1,..,vn⟩ for tuples to avoid ambiguity with (x)

◼ “∃x” is what we previously wrote “x:ty” (except I’m not telling you about types)

◼ fail is a language construct, alongside “|”

◼ Core Verse is untyped (like lambda calculus)

 “Exists”
∃x. x = (∃y. ⟨2,y⟩);
 x = (∃z. ⟨z,3⟩);
 x

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

Desugar

◼ Main constructs
◼ exists ∃ brings a variable into scope
◼ unification = says that two expressions have the same value
◼ sequencing ; sequences unifications
◼ choice |, fail
◼ conditional one return first success
◼ for-loops all return all successes

What is execution?

◼ Execution = “solve the equations”
◼ Find values for the exists variables that make all the equations true.

◼ In this example:
◼ x=⟨2,3⟩, z=2, y=3

◼ Operationally: unification.
◼ But unification is hard for programmers
◼ backtracking, choice points, undoing, rigid variables, …

∃x. x = (∃y. ⟨2,y⟩);
 x = (∃z. ⟨z,3⟩);
 x

Idea! Use rewriting foo x = x*x + 1

foo (3+2)

foo 5

5*5 + 1

25 + 1

26

let x=3+2 in x*x + 1

(3+2)*(3+2) + 1

5*(3+2) + 1

5*5 + 1

(3+2)*5 + 1

let x=5
in x*x + 1

Rewriting: key ideas
◼ To answer "what does this program do, or what does it mean?“

just apply the rewrite rules
◼ Rewrite rules are things like

◼ Add/multiply constants
◼ Replace a function call with a copy of the function's RHS, making substitutions
◼ Substitute for a let-binding

◼ You can apply any rewrite rule, anywhere, anytime
◼ They should all lead to the same answer (“confluence”)

◼ Good as a way to explain to a programmer: just source-to-source rewrites

◼ Good for compilers, when optimising/transforming the program

◼ Probably not good as a final execution mechanism

Execution = rewriting

Desugar

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

Execution = rewriting

Float ∃

Desugar

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

Execution = rewriting

Float ∃

Desugar

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

Substitute for
(one occurrence of) x

Execution = rewriting

Float ∃

Desugar

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

Decompose equality
of pairs (unification)

Execution = rewriting

Float ∃

Desugar

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

Substitute for
another

occurrence of x

Substitute for y

Garbage collect

An alternative sequence

Float ∃

Desugar

x:tuple(int,int);
x = (2,y:int);
x = (z:int,3);
x

Unification rewrite rules

Primitive operations

Normalisation rewrite rules
getting stuff “out of the way”

Conditionals

◼ Desugar conditionals like this:

◼ Rewrite rules for one

one: a new, simpler construct

Variables bound in e1 can scope over e2

Loops

◼ Desugar for-loops like this:

◼ Rewrite rules for ‘all’

Variables bound in e1 can
scope over e2

Choice

◼ How to rewrite (e1 | e2)?

Duplicate surrounding context

E.g. (x + (y | z) *2) 🡪 (x + y*2) | (x + z*2)

More in the paper...
https://simon.peytonjones.org/verse-calculus

◼ First attempt to give a deterministic rewrite semantics to a
functional logic language.

◼ Much more detail, lots of examples

◼ Confluence proof.

There is more. A lot more.

◼ Mutable state, I/O, and other effects.
◼ An effect system, not a monadic setup

◼ Pervasive transactional memory

◼ Structs, classes, inheritance

◼ The type system and the verifier – lots of cool stuff here

Types

◼ In Verse a type is simply a function
◼ that fails outside the type
◼ and is the identity function inside the type

◼ So int is the identity functions on integer, and fails otherwise
◼ isEven (returning even numbers, failing otherwise) is a type
◼ array(int) succeeds on arrays where all elements are integers…

It actually simply 'map'!
◼ ((p:int, q:int) where p<q)=>(p,q) is the type of pairs of

integers where the first element is smaller than the second
◼ The Verse verifier rejects programs that might go wrong. It's

wildly undecidable in general, but the verifier does its best

Takeaways

◼ Verse is extremely ambitious
◼ Kick functional logic programming out the lab and into the mainstream
◼ Stretches from end users to professional developers
◼ Transactional memory at scale
◼ Very strong stability guarantees
◼ A radical new approach to types

◼ Verse is open
◼ Open spec, open-source compiler, published papers (I hope!)

Before long: a conversation to which you can contribute

Questions

