BEYOND FUNCTIONAL
PROGRAMMING:
THE VERSE PROGRAMMING
LANGUAGE

Lennart Augustsson
(and many others)

Epic Games

GOTO Copenhagen
October 2023

Epic Games

m Makes games, e.g., Fortnite
m Unreal Engine, a game engine

Epic Games

m Unreal Engine used for many, many games

'V] A_' ' [[Ll };\’ | '..
'AKENS §
AN UNREAL ENGINES
EXPERIENCE (

http://www.youtube.com/watch?v=WU0gvPcc3jQ&t=52

Epic Games

m Unreal Engine used for many, many games

'V] A_' ' [[Ll };\’ | '..
'AKENS §
AN UNREAL ENGINES
EXPERIENCE (

http://www.youtube.com/watch?v=WU0gvPcc3jQ&t=172

Verse: a language for the metaverse

Tim Sweeney's vision of the metaverse

Social interaction in a shared real-time 3D simulation
An open economy with rules but no corporate overlord

A creation platform open to all programmers, artists, and
designers, not a walled garden

Much more than a collection of separately compiled,
statically-linked apps: everyone's code and content must
interoperate dynamically, with live updates of running code

Pervasive open standards. Not just Unreal, but any other
game/simulation engine, e.g., Unity.

Verse is open

Like the metaverse vision, Verse itself is open
m We will publish papers, specification for anyone to implement

m We will offer compiler, verifier, runtime under permissive
open-source license with no IP encumbrances.

Goal: engage in a rich dialogue with the community that will
make Verse better.

Do we really need a new language?

m Objectively: no. All languages are Turing-complete.

m But we think we can do better with a new language

m Scalable to running code, written by millions of programmers who do
not know each other, that supports billions of users

m Transactional from the get-go; the only plausible way to manage
concurrency across 1M+ programmers

m Strong interop guarantees over time: compile fime guarantees that a
module subsumes the API of the previous version.

m And ..

m Learnable as a first language (c.f. Javascript yes, C++ no)

m Extensible: mechanisms for the language to grow over time, without
breaking code.

Where are we?

m A version of Verse released in April 2023 with UEFN.

m UEFN allows anyone to add new "islands" to Fortnite.
m Thousands of new "islands"

m Thousands of programmers
m Revenue shared with island creators based on engement

A taste of Verse

a Verse 1. a familiar FP subset
a Verse 2: choice
a Verse 3: functional logic

View from 100,000 feet

Verse is a functional logic language (like Curry or Mercury).

Verse is a declarative language: a variable names a single
value, not a cell whose value changes over time.

Verse is lenient but not strict:
m Like strict: "everything" gets evaluated in the end
m Like lazy: functions can be called before the argument has a value

Verse has an unusual static type system: types are first-class
values.

Verse has an effect system, rather than using monads.

A taste of Verse

m A subset of Verse is a fairly ordinary functional language

m Integers

m Tuples/arrays NEMY ((92,2) ,3, 4)
fst(3,4)

Nl =

“array{..}" is
long-form

syntax

array{3,4} jarray{3} .

Bindings

n,_n

Syntax: ":i=" and *;"

Think recursive bindings.
NOT assignment

y:=x+1, x:=3; x*y

Order does
not matter

Functions and lambda

Arguments on
the LHS...

f(x:int) :int := x+1; £ (3)

f:=(x:int=>x+1),; £ (3)

Verse uses infix "=>" for lambda

Conditionals and recursion

fac(x:int) :int :=
if (x=0) then 1 else n * fac(n-1)

Conditionals

Verse 2: choice

Choice

m In most languages, an expression denotes one value
m A Verse expression denotes a sequence of zero or more values

One value

A quirky notation

Two values for “fail”

false®? Zero values

1..10 Ten values

Choice
operator

Binding and choices

Denotes sequence of
three values: 2, 8, 3

m A bit like., e.g., Haskell list comprehension JE3s RSt TANZID

m Key point: a variable is always bound to a single value,
not to a sequence of values. I.e.,

m We execute the (x+1) with x bound to 1, then with x bound to 7, then
with x bound to 2.

m Not with x bound to (1|7]2)

x:=(1]7]2); x+1

Nested choices

What sequence of values does this denote?

x:=(112); y:=(718); (x,y)

Answer: (1,7), (1,8), (2,7), (2,8)
1R o (e (U S el (oI UG [(x,y) | x<-[1,2]; y<-[7,8]]

But more fundamentally built in

Key point again: a variable is always bound to a single value,
not to a sequence of values

Nested choices

x:=(112); y:=(718); (x,y)

R X ((112), (718))

m This still produces the same sequence of pairs,
not a single pair containing two sequences!

m Same for all operations

77 + (1]3) UEUERUIELCEERE (774+1) | (7743)
77 + false? BRuE USRI

Nested choices and funky order

m What sequence of values does this denote?

x:=(yl12); y:=(718); (x,y)

m Answer: (7,7), (8,8), (2,7), (2,8)
m Order of results is still left-to-right

m But data dependencies can be "backwards”

CREl I [(x,y) | x<-[y,2]; y<-[7,8]1] -- Rejected!

Conditionals

No Booleans!

if (e) then el else e2

Returns el if e succeeds
m "Succeeds" = returns one or more values

Returns e2 if e fails
m "Fails" = returns zero values

Like Icon (from a long time ago)

Comparisons

1f (x<20) then el else e2

m (x<20)
m fails if x>= 20
m succeeds if x < 20, returning the left operand

m Example: (3 + (x<20))
m Succeeds if x=7, returning 10
m Fails if x=25

m Example: (O < x < 20)

m Succeeds if x is between O and 20, returning O

m Fails if x is out of range
m (<) is right-associative if (0<x<20) then el else e2
c.f. if (0<x && x<20) then .. else ..

Conjunction and disjunction

if (x<20, y>0) then el else e2

m The tuple expression (x<20,y>0) fails
if either (x<20) or (y>0) fails

i1f (x<20 | y>0) then el else e2

m Choice succeeds if either branch succeeds

Equality
i1f (x=0) then el else e2

m (x=0)
m fails if x is not zero

succeeds if x is zero. returning x As we will see, "=" is a
" A R super-important operator

m "If xis2or 3 then.."

if (x=(2]|3)) then el else e2

if (x==2 || x==3) then .. else..

From choice to tuples

m for turns a choice into a tuple/array
for{ 3 The singleton tuple, array(3)
for{ 3 | 4 } The tuple (3,4)

for{ false? The empty tuple ()

for{ 1..10 } The tuple (1,2...., 10)

Order is important

m for turns a choice into a tuple/array

for{ 3 | 4 } The tuple (3,4)

for{ 4 | 3 }

The tuple (4,3)

m That's why we say that an expression denotes a sequence of
values, not a bag of values, and definitely not a set.

m So"|" is associative but not commutative

From tuples to choice

m ? turns a tuple/array into a choice

(3,4) ? The choice (3 | 4)

for{ e }? Same as e

for{ e? } Same as e

m false := (), the empty tuple
so false? always fails.

Generalising for for (el) do e2

Iterate over the N (non-failing)
choices in the domain el

Form the N-tuple from the

value(s) of range e?2
(variables bound in el scope over e2)

for (1:=1..3) do i*i

((1*1), (2*2), (3*3))

Generalising for for (el) do e2

Iterate over the N (non-failing)

Form the N-tuple from the

choices in the domain el value(s) of range e?2

(variables bound in el scope over e2)

m Domain expression can fail

for (1:=1..4, isEven(i)) do (i*1i)

(2*2, 4*4)

Generalising for for (el) do e2

Form the N-tuple from the

value(s) of range e?2
(variables bound in el scope over e2)

Iterate over the N (non-failing)

choices in the domain el

m Range expression can fail

for (i:=1..4) do (i<3)

(1<3, 2<3, 3<3, 4<3)

(1, 2, false?, false?)

Generalising for

for (el) do e2

Iterate over the N (non-failing)

choices in the domain el

Form the N-tuple from the

value(s) of range e?2
(variables bound in el scope over e2)

m Range expression can yield multiple values

for (i:=1..3) do (i|i+7)

And we can use that
choice to iterate:

((118),

(1,2,3)
(1,9,3)

for(l1..5) do (0]1]2);

(219), (3110))

| (1,2,10) |
| (1,9,10) |

Xs is successively bound to all
5-digit numbers in base 3

Indexing arrays asli]

for{i:=0..Length(as)-1; as[i]+1} Returns (4,8,5)

m Indexing an array/tuple, as[i], fails on bad indices

as:=(3,7,4)

Denotes one value, 3

as[2] Denotes one value, 4

as[7] Fails: denotes zero values

if (x:=as[i]) then x+1 else 0 Returns O if i is out of range

New: i:int brings i into scope
without giving it a value

Narrowing
as:=(3,7,4) ;

for{i:int;

m What values can i take? Clearly just 0,12
m So expand as[i] to those three choices

m This is called "narrowing” in the functional logic literature

as:=(3,7,4); as:=(3,7,4);
for{i:int; as[i] + 1} for{i:int; ((i=0; 3+1) |

(i=1; 7+1) |
(i=2; 4+1)) }

head (xs)

Some functions

Fails on empty tuple

tail (xs) :=for{i>0; xs[i:int]}

cons (x, xs)

snoc (xs, x)
append (xs,ys)
map (£, xs)
zip (xs,ys)

for{x | xs[i:int]}
for{xs[i:1nt] | x}
for{xs[i:int] | ys[j:int]}
for{f(xs[i:int])}
for{xs[i:int], ys[i]}

Function calls and failure

Verse tries to make it easy to see if an expression can fail
m x cannot fail (remember, a variable is bound to a single value)
m x>y can fail (if x <= y)

m Function application f(e) cannot fail. The verifier ensures
this, and rejects the program if it can't prove it

m Function application f[e] can fail, if f's body fails. Indexing is
hot special in this sense.

Putting it together

fibsl0 := for(i1:=0..9) do (if (r:=fibslO0[i-1]1+fibsl0[i-2])
then r

else 1)

Verse 3: functional logic

Separating "bring into scope” from “give
value”

7; x+1>3; y=x*2

means the same as

x:int;, x=7; x+1>3; y=x*2

: : By the way
Bring x into /
scope. X must be 7

I'm not telling (or else fail) The very same
you what its "=" as before

value is yet

Separating "bring into scope” from “give
value”

Think:
x:=7; x+1>3; y:x*z - "" brings the variable
intfo scope.
» Scope extends to the
means the same as left as well as right

x:int; x=7; x+1>3; y=x*2

means the same as

x=7; x+1>3; y=(x:int) *2

x+1>3;, y=(x:=7) *2

Towards functional logic programming

KM S Il 1ot (y,z) = if (x=0) then (3,4)
else (232, 913)

in vy+z

m Verse Bring y,z into scope

y:int; z:int;
if (x=0) then { y=3; z=4 }

else { y=232; z=913 };

y+z
Give them values

Towards functional logic programming

m Partial values

x's first component is 2
:tuple (int,int) ; y is a fresh unbound variable

(2,y:int) ;
(z:int, 3) ;
X's second component is 3
Z is a fresh unbound variable
:tuple (int,int) ;
= (2,_);
= (_,3);

Towards functional logic programming

m You can even pass those in-scope-but-unbound variables to a
function

f(p:1int,g:int) :int :=
if (x=0) then { p=3; q=4 }
else { p=232; g=913 };
y:int; z:int;

f(y,z) Pass y,z to f, which binds
v+z each of them to a value

..and add up the
results

Towards functional logic programming

f(p:int,qg:int) :int :=
if (x=0) then { p=3; q=4 }
else { p=232; g=913 };

y:int; z:int;
f(y,z)’
y+z

m Y,z look very like logical variables in Prolog,
aka “unification variables”.

m And "=" looks very like unification.

Towards functional logic programming

m We can do the usual "run functions backwards” thing

swap (x:int, y:int) := (y,x)

swap (3,4) Run swap "forward": returns (4,3)

w:tuple (int,int) ;
swap(w) = (3,4);
W

Run swap "backward”: Also returns (4,3)

Flexible and rigid variables

What does this do? EIEEiTER AR
if (x=0) then y=1 else y=2;

Sets ;r?e;(value Reads the
value of x Sets the

value of y

One plan (Curry): two different equality operators

Verse plan:

m inside a conditional scrutinee, variables bound outside (e.g., x) are
“rigid” and can only be read, not unified

m outside, x is "flexible" and can be unified

Lenience

m Clearly Verse cannot be strict
m call-by-value
m with a defined evaluation order

because earlier bindings may refer to later ones;
and functions can take as-yet-unbound logical variables as arguments

"Residuation”

w_w

m And it cannot be lazy, because all those "=" unifications must
happen, to give values to variables.

m So Verse is lenient if' is stuck until x

m "Everything" is eventually evaluated gets a value
m But only when it is "ready”

Like datafl
| e canarion Let's hope f
gives x its value

Making it all precise

Designing the aeroplane during take-off

m MaxVerse: the glorious vision.
A significant research project in its own right.

m ShipVerse: a conservative subset shipped in April 2023.

Core Verse

 MaxVerse is a big language

m To give it precise semantics, we use a small Core Verse
language:

m Desugar MaxVerse into CoreVerse

m Give precise semantics to CoreVerse
m CoreVerse might well be a good compiler intermediate language

m Analogy:
m MaxVerse = Haskell
m CoreVerse = Lambda calculus

Core Verse

Integers k

Variables o 18558 o)

Programs p = one{e} where fvs(e) = {}

Expressions ex=v| v=e;e | ¢le | fail | 3x.e | v, v, | one{e} | all{e}
Values vi=x | hnf

Head values hnf :=k | op | (v;,~v,) | Ax.e
Primops op =gt | add | isInt

w_u

=" is a language construct, not a primop (like gt)

(v1,..,vn) for tuples to avoid ambiguity with (x)

"3 x" is what we previously wrote "x:ty" (except I'm not telling you about types)
w I n

fail is a language construct, alongside

Core Verse is untyped (like lambda calculus)

:tuple (int,int) ; “EXiS"'S”

- (21Y=int);
- .3 . dx. x = (ay (ZIY))I
(x:1nt,3) R

X
X

m Main constructs

m exists 3 brings a variable into scope
m unification= says that fwo expressions have the same value
m sequencing ; sequences unifications

m choice |, fail

m conditional one return first success

m for-loops all return all successes

What is execution? Ax. x = ((33y-(<2,33;§>j

X
X

m Execution = "solve the equations”
m Find values for the exists variables that make all the equations true.

m In this example:
m x=(2,3), z=2, y=3

m Operationally: unification.

m But unification is hard for programmers
m backtracking, choice points, undoing, rigid variables, ...

Ideal Use rewriting

foo (3+2) let x=3+2 in x*x + 1

(3+2) *(3+2) + 1 let x=5
in x*x + 1
5*(3+2) + 1 (342)*5 + 1

5*5 + 1

Rewriting: key ideas
To answer "what does this program do, or what does it mean?"
just apply the rewrite rules

Rewrite rules are things like

m Add/multiply constants

m Replace a function call with a copy of the function's RHS, making substitutions
m Substitute for a let-binding

You can apply any rewrite rule, anywhere, anytime
m They should all lead to the same answer (“confluence")

Good as a way to explain to a programmer: just source-to-source rewrites
Good for compilers, when optimising/transforming the program

Probably not good as a final execution mechanism

: tuple (int, int) ; Execution = rewriting

(2f¥=lnt) : Fy. (2,¥);
(z:int,3); Desugar (3z. (z,3));

: tuple (int, int) ; Execution = rewriting

(2’¥:int); dx. x = (dy. (2,y));
(z:int,3); Desugar x = (3z. (z,3));

X

: tuple (int, int) ; Execution = rewriting

2,y:1 g
(f¥ ln13:). : (Ay. (2,y));
(z:int, 3) ; 3z. (z,3)):

Substitute for
(one occurrence of) x

: tuple (int, int) ; Execution = rewriting

(2,y:int) ;
” . : (Fy. (2,y);
(z:int, 3) ; (Iz. (z,3));

Decompose equality
of pairs (unification)

Execution = rewriting

= (2,v:1 g
= (f¥ ln13:). : (Ay. (2,y));
= (z:int,3); 3z. (z,3)):

:tuple (int,int) ;

Substitute for
another
occurrence of X

dxyz. x = (2,y); y=3; z=2; (2,3)

tuple (int,int) ; An alternative sequence

(2’¥:int); dx. x = (dy. (2,y));
(z:int,3); Desugar x = (3z. (z,3));

X

i (2,y)=(z,3); (z,3)

Unification rewrite

U-LIT ki=k,;e— e if k, =k,

U-TUP (Vy, ™, V) =V, Vp); € = V| =V]; =

U-FAIL hnf, = hnf,; e — fail if u-L1T, U-TUP dO not match
U-OCCURS x=V|[x]; e — fail if V# [

Integers k

Variables Xy zv:fg

Programs p = one{e} where fvs(e) = {}

Expressions ex=v | v=e;e | ele, | fail | Ix.e | v; v, | one{e} | all{e}
Values vi=x | hnf

Head values hnf :=k | op | (v;,~v,) | Ax.e

Primops op =gt | add | isInt

Primitive operations

APP-ADD add{k,, k,) — k; where k; =k, + k,
APP-GT gt(k,, k,) — Kk, if ki > k,
APP-GT-FAIL gt{k,, k,) — fail if k, < k,

APP-LAMY (Ax.e)(v) — Jx.x=v; e if x & fvs(v)

APP-TUP (Vg = V) (V) — (v=0;v) I~ (v=n;v,)
APP-TUP-() (}(v) — fail

Normalisation rewrite rules
getting stuff “out of the way”

EXI-ELIM dx.e — e if x & fvs(e)
EQN-ELIM dx.E[x=v; e] — E|[€] if x ¢ fvs(E, e), x ¢ bvs(E), and v # V| x]
EXI-FLOAT" E[3x.e] — 3x.E| €] if x ¢ fvs(E), x € bvs(E)

SEQ-ASSOC V,=(V,=¢€;; €); €5 — V;=€;; V, =€); €

SUBST x=v; e — x=v; e{v/x} if v# V[x]

\"II\L-S\VYI\P \.’: ‘xp; e ——) x’: ‘\y: e

EQN-SWAP v=ef; vy=v,; e—> v, =V,; v=ef; e

Integers k
Variables xyzrf.g

Cond itionals Programs p == one{e} where fvs(e) = {}

Expressions ex=v | v=e;e | ¢le | fail | Ix.e | v, v, | one{e} | all{e}

Values vu=x | hnf
Head values hnf ==k | op | (v, v,) | Ax.e
Primops op ==gt | add | isInt

m Desugar conditionals like this: one: a new, simpler construct

if e; then e, else e means 3y.y=one{(e;; Ax.e) | (Ax.e3)}; y{)

Variables bound in el can scope over e2

m Rewrite rules for one RRds one{fail} — fail

ONE-CHOICE one{vi |l &} — v

ONE-VALUE one{v} — v

Integers k

Variables xyzrf.g
Loo ps Programs p == one{e} where fvs(e) = {}
Expressions ex=v | v=e;e | ¢le | fail | Ix.e | v, v, | one{e} | all{e}
Values vu=x | hnf
Head values hnf ==k | op | (v, v,) | Ax.e
Primops op ==gt | add | isInt

m Desugar for-loops like this:
for ¢ means all{e}
for(e;) do e, means 3dy.y=all{e;; Ax.ex}; map{Az. z(), y)

Variables bound in el can
scope over e2

m Rewrite rules for 'all’ ALL-FAIL for{fail} — ()

ALL-caoice for{vi | --- lv,} — (v, -+, w)

Choice

m How to rewrite (el | e2)?

CHOICE E[ellegl —>E[€1]|E[€z]

Duplicate surrounding context
Eg. (x+(y|2)*2) 0 (x+y*2) | (x+2z*2)

Evaluation contexts E =[] | v=Ere|v=efsE | Ax.E

Effect-free exprs ef m=v | op(v) --for certain op

| all{e} | one{e} -- maybe?

More in the paper...
https://simon.peytonjones.org/verse-calculus

m First attempt to give a deterministic rewrite semantics to a
functional logic language.

m Much more detail, lots of examples

m Confluence proof.

There is more. A lot more.

Mutable state, I/0, and other effects.
m An effect system, not a monadic setup

Pervasive transactional memory
Structs, classes, inheritance

The type system and the verifier - lots of cool stuff here

Types

In Verse a type is simply a function
m that fails outside the type
m and is the identity function inside the type

So int is the identity functions on integer, and fails otherwise
isEven (returning even numbers, failing otherwise) is a type
array (int) succeeds on arrays where all elements are integers...
It actually simply 'map’!

((p:int, g:int) where p<q)=>(p,q) is the type of pairs of
integers where the first element is smaller than the second

The Verse verifier rejects programs that might go wrong. It's
wildly undecidable in general, but the verifier does its best

Takeaways

m Verse is extremely ambitious

m Kick functional logic programming out the lab and into the mainstream
m Stretches from end users to professional developers

m Transactional memory at scale

m Very strong stability guarantees

m A radical new approach to types

m Verse is open
m Open spec, open-source compiler, published papers (I hopel)

Before long: a conversation to which you can contribute

Questions

